From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 3472/CH10/EX10.2/Example10_2.sce | 57 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 57 insertions(+) create mode 100644 3472/CH10/EX10.2/Example10_2.sce (limited to '3472/CH10/EX10.2') diff --git a/3472/CH10/EX10.2/Example10_2.sce b/3472/CH10/EX10.2/Example10_2.sce new file mode 100644 index 000000000..c8ae3e8f3 --- /dev/null +++ b/3472/CH10/EX10.2/Example10_2.sce @@ -0,0 +1,57 @@ +// A Texbook on POWER SYSTEM ENGINEERING +// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar +// DHANPAT RAI & Co. +// SECOND EDITION + +// PART II : TRANSMISSION AND DISTRIBUTION +// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES + +// EXAMPLE : 3.2 : +// Page number 128-129 +clear ; clc ; close ; // Clear the work space and console + +// Given data +l = 10.0 // Length(km) +V_s = 11.0*10**3 // Sending end voltage(V) +P = 1000.0*10**3 // Load delivered at receiving end(W) +PF_r = 0.8 // Receiving end lagging power factor +r = 0.5 // Resistance of each conductor(ohm/km) +x = 0.56 // Reactance of each conductor(ohm/km) + +// Calculations +// Case(a) +R = r*l // Resistance per phase(ohm) +X = x*l // Reactance per phase(ohm) +E_s = V_s/3**0.5 // Phase voltage(V) +I = P/(3**0.5*V_s*PF_r) // Line current(A) +// Case(b) +sin_phi_r = (1-PF_r**2)**0.5 // SinĪ†_R +E_r = E_s-I*R*PF_r-I*X*sin_phi_r // Receiving end voltage(V) +E_r_ll = 3**0.5*E_r/1000 // Receiving end line to line voltage(kV) +// Case(c) +loss = 3*I**2*R // Loss in the transmission line(W) +P_s = P+loss // Sending end power(W) +n = P/P_s*100 // Transmission efficiency(%) +// Alternate method +Z = R**2+X**2 +P_A = 1.0/3*P // Load delivered(W/phase) +Q = 1.0*P*sin_phi_r/(3*PF_r) // Reactive load delivered(VAR/phase) +A = (V_s**2/3.0)-2*(P_A*R+Q*X) // Constant +B = (1/9.0)*P**2*Z/PF_r**2 // Constant +const = (A**2-4*B)**0.5 // sqrt(A^2-4B) +E_r_A = ((A+const)/2)**0.5/1000.0 // Receiving end voltage(kV/phase) +E_r_A_ll = 3**0.5*E_r_A // Receiving end line-line voltage(kV) +I_A = P/(3**0.5*E_r_A_ll*1000*PF_r) // Line current(A) +loss_A = 3*I_A**2*R // Loss in the transmission line(W) +P_s_A = P+loss_A // Sending end power(W) +n_A = P/P_s_A*100 // Transmission efficiency(%) + +// Results +disp("PART II - EXAMPLE : 3.2 : SOLUTION :-") +printf("\nCase(a): Line current, |I| = %.1f A", I) +printf("\nCase(b): Receiving end voltage, E_r = %.f V (line-to-neutral) = %.2f kV (line-to-line)", E_r,E_r_ll) +printf("\nCase(c): Efficiency of transmission = %.2f percent \n", n) +printf("\nAlternative solution by mixed condition:") +printf("\nCase(a): Line current, |I| = %.1f A", I_A) +printf("\nCase(b): Receiving end voltage, E_r = %.3f kV/phase = %.2f kV (line-line)", E_r_A,E_r_A_ll) +printf("\nCase(c): Efficiency of transmission = %.2f percent", n_A) -- cgit