From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 3369/CH16/EX16.6/Ex16_6.sce | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100755 3369/CH16/EX16.6/Ex16_6.sce (limited to '3369/CH16/EX16.6') diff --git a/3369/CH16/EX16.6/Ex16_6.sce b/3369/CH16/EX16.6/Ex16_6.sce new file mode 100755 index 000000000..e546e1992 --- /dev/null +++ b/3369/CH16/EX16.6/Ex16_6.sce @@ -0,0 +1,33 @@ +//Chapter 16,Example 6,page 560 +//Determine the wave generated +clear +clc +// With refrence to table 16.1 +C1 = 0.125*10^-6 // F +C2 = 1*10^-9 // F +R1 = 360 // ohm +R2 = 544 // ohm +V0 = 100 // kV +theta = sqrt(C1*C2*R1*R2) +neta = 1/(1+(1+R1/R2)*C2/C1) +alpha = R2*C1/(2*theta*neta) +printf("\n Theta = %f micro S",theta*10^6) +printf("\n Neta = %f",neta) +printf("\n Alpha = %f ",alpha) +// Coresponding to alpha the following can be deduced from Fig 16.12 +T2 = 10.1*theta*10^6 +T1 = T2/45 +imp = T1/T2 // generated lighting impulse +// From equations 16.41 and 16.42 +a1 = (alpha-sqrt(alpha^2-1))*10^-6/(theta) +a2 = (alpha+sqrt(alpha^2-1))*10^-6/theta +printf("\n T1 = %f microS", T1) +printf("\n T2 = %f microS", T2) +printf("\n Generated lighting impulse = %e wave", imp) +printf("\n alpha1 = %f microS", a1) +printf("\n alpha2 = %f microS", a2) +// According to equation 16.40 +et = neta*(alpha*V0)/sqrt(alpha^2-1) +printf("\n e(t) = %f * (e^%ft - f^%ft)",et,-a1,-a2) // Equation of the wave form generated by the impulese + +//Answers may vary due to round off error -- cgit