From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 3204/CH24/EX24.1/Ex24_1.sce | 17 +++++++++++++++++ 3204/CH24/EX24.10/Ex24_10.sce | 14 ++++++++++++++ 3204/CH24/EX24.11/Ex24_11.sce | 14 ++++++++++++++ 3204/CH24/EX24.12/Ex24_12.sce | 16 ++++++++++++++++ 3204/CH24/EX24.2/Ex24_2.sce | 22 ++++++++++++++++++++++ 3204/CH24/EX24.5/Ex24_5.sce | 17 +++++++++++++++++ 6 files changed, 100 insertions(+) create mode 100644 3204/CH24/EX24.1/Ex24_1.sce create mode 100644 3204/CH24/EX24.10/Ex24_10.sce create mode 100644 3204/CH24/EX24.11/Ex24_11.sce create mode 100644 3204/CH24/EX24.12/Ex24_12.sce create mode 100644 3204/CH24/EX24.2/Ex24_2.sce create mode 100644 3204/CH24/EX24.5/Ex24_5.sce (limited to '3204/CH24') diff --git a/3204/CH24/EX24.1/Ex24_1.sce b/3204/CH24/EX24.1/Ex24_1.sce new file mode 100644 index 000000000..8d0d7ed9e --- /dev/null +++ b/3204/CH24/EX24.1/Ex24_1.sce @@ -0,0 +1,17 @@ +// Initilization of variables +f=1/6 // oscillations/second +x=8 // cm // distance from the mean position +// Calculations +omega=2*%pi*f +// Amplitude is given by eq'n +r=sqrt((25*x^2)/16) // cm +// Maximum acceleration is given as, +a_max=(%pi/3)^2*10 // cm/s^2 +// Velocity when it is at a dist of 5 cm (assume s=5 cm) is given by +s=5 // cm +v=omega*sqrt(r^2-s^2) // cm/s +// Results +clc +printf('(a) The amplitude of oscillation is %f cm \n',r) +printf('(b) The maximum acceleration is %f cm/s^2 \n',a_max) +printf('(c) The velocity of the particle at 5 cm from mean position is %f cm/s \n',v) diff --git a/3204/CH24/EX24.10/Ex24_10.sce b/3204/CH24/EX24.10/Ex24_10.sce new file mode 100644 index 000000000..8d659d749 --- /dev/null +++ b/3204/CH24/EX24.10/Ex24_10.sce @@ -0,0 +1,14 @@ +// Initilization of variables +l=1 // m // length of the simple pendulum +g=9.81 // m/s^2 +// Calculations +// Let t_s be the time period when the elevator is stationary +t_s=2*%pi*sqrt(l/g) /// seconds +// Let t_u be the time period when the elevator moves upwards. Then from eqn 1 +t_u=2*%pi*sqrt((l)/(g+(g/10))) // seconds +// Let t_d be the time period when the elevator moves downwards. +t_d=2*%pi*sqrt(l/(g-(g/10))) // seconds +// Results +clc +printf('The time period of oscillation of the pendulum for upward acc of the elevator is %f seconds \n',t_u) +printf('The time period of oscillation of the pendulum for downward acc of the elevator is %f seconds \n',t_d) diff --git a/3204/CH24/EX24.11/Ex24_11.sce b/3204/CH24/EX24.11/Ex24_11.sce new file mode 100644 index 000000000..10b50fe6a --- /dev/null +++ b/3204/CH24/EX24.11/Ex24_11.sce @@ -0,0 +1,14 @@ +// Initilization of variables +t=1 // second // time period of the simple pendulum +g=9.81 // m/s^2 +// Calculations +// Length of pendulum is given as, +l=(t/(2*%pi)^2)*g // m +// Let t_u be the time period when the elevator moves upwards. Then the time period is given as, +t_u=2*%pi*sqrt((l)/(g+(g/10))) // seconds +// Let t_d be the time period when the elevator moves downwards. +t_d=2*%pi*sqrt(l/(g-(g/10))) // seconds +// Results +clc +printf('The time period of oscillation of the pendulum for upward acc of the elevator is %f seconds \n',t_u) +printf('The time period of oscillation of the pendulum for downward acc of the elevator is %f seconds \n',t_d) diff --git a/3204/CH24/EX24.12/Ex24_12.sce b/3204/CH24/EX24.12/Ex24_12.sce new file mode 100644 index 000000000..255e2f320 --- /dev/null +++ b/3204/CH24/EX24.12/Ex24_12.sce @@ -0,0 +1,16 @@ +// Initilization of variables +m=15 // kg // mass of the disc +D=0.3 // m // diameter of the disc +R=0.15 // m // radius +l=1 // m // length of the shaft +d=0.01 // m // diameter of the shaft +G=30*10^9 // N-m^2 // modulus of rigidity +// Calculations +// M.I of the disc about the axis of rotation is given as, +I=(m*R^2)/2 // kg-m^2 +// Stiffness of the shaft +k_t=(%pi*d^4*G)/(32*l) // N-m/radian +t=2*%pi*sqrt(I/k_t) // seconds +// Results +clc +printf('The time period of oscillations of the disc is %f seconds \n',t) diff --git a/3204/CH24/EX24.2/Ex24_2.sce b/3204/CH24/EX24.2/Ex24_2.sce new file mode 100644 index 000000000..8c33c4385 --- /dev/null +++ b/3204/CH24/EX24.2/Ex24_2.sce @@ -0,0 +1,22 @@ +// Initilization of variables +x_1=0.1 // m // assume the distance of the particle from mean position as (x_1 & x_2) +x_2=0.2// m +// assume velocities as v_1 & v_2 +v_1=1.2 // m/s +v_2=0.8 // m/s +// Calculations +// The amplitude of oscillations is given by dividing eq'n 1 by 2 as, +r=sqrt(0.32/5) // m +omega=v_1/(sqrt(r^2-x_1^2)) // radians/second +t=(2*%pi)/omega // seconds +v_max=r*omega // m/s +// let the max acceleration be a which is given as, +a=r*omega^2 // m/s^2 +// Results +clc +printf('(a) The amplitude of oscillations is %f m \n',r) +printf('(b) The time period of oscillations is %f seconds \n',t) +printf('(c) The maximum velocity is %f m/s \n',v_max) +printf('(d) The maximum acceleration is %f m/s^2 \n',a) // the value of max acc is incorrect in the textbook +// NOTE: the value of t is incorrect in the text book +// The values may differ slightly due to decimal point accuracy diff --git a/3204/CH24/EX24.5/Ex24_5.sce b/3204/CH24/EX24.5/Ex24_5.sce new file mode 100644 index 000000000..308fd2173 --- /dev/null +++ b/3204/CH24/EX24.5/Ex24_5.sce @@ -0,0 +1,17 @@ +// Initilization of variabes +W=50 // N // weight +x_0=0.075 // m // amplitude +f=1 // oscillation/sec // frequency +g=9.81 +// Calculations +omega=2*%pi*f +K=(((2*%pi)^2*W)/g)*(10^-2) // N/cm +// let the total extension of the string be delta which is given as, +delta=(W/K)+(x_0*10^2) // cm +T=K*delta // N // Max Tension +v=omega*x_0 //m/s // max velocity +// Results +clc +printf('(a) The stiffness of the spring is %f N/cm \n',K) +printf('(b) The maximum Tension in the spring is %f N \n',T) +printf('(c) The maximum velocity is %f m/s \n',v) -- cgit