From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 3161/CH8/EX8.1/Ex8_1.sce | 36 ++++++++++++++++++++++++++++++++++++ 3161/CH8/EX8.2/Ex8_2.sce | 37 +++++++++++++++++++++++++++++++++++++ 3161/CH8/EX8.3/Ex8_3.sce | 24 ++++++++++++++++++++++++ 3161/CH8/EX8.4/Ex8_4.sce | 33 +++++++++++++++++++++++++++++++++ 4 files changed, 130 insertions(+) create mode 100644 3161/CH8/EX8.1/Ex8_1.sce create mode 100644 3161/CH8/EX8.2/Ex8_2.sce create mode 100644 3161/CH8/EX8.3/Ex8_3.sce create mode 100644 3161/CH8/EX8.4/Ex8_4.sce (limited to '3161/CH8') diff --git a/3161/CH8/EX8.1/Ex8_1.sce b/3161/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..05b7ce0fc --- /dev/null +++ b/3161/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,36 @@ +clc; +//page 436 +//problem 8.1 + +//Given frequency range fc= 1MHz to fc = 1.0005Mhz +//Single side message bandwidth is fM +fM= (1.0005 - 1)*10^6; +disp('Message bandwidth is '+string(fM)+' Hz'); +//The textbook contains a calculation error here. The calculated fM in the textbook is 500kHz instead of 5kHz, following which all the solutions are erroneous + +//Given input signal strength Si= 1mW +//Let output signal strength be So +//So=Si/4 +Si= 10^(-3); +So= Si/4; +disp('Signal output strength is '+string(So)+' dB'); + +//Given Power Spectral Density n = 10^-9 W/Hz +//Let output noise strength be No +n= 10^-9; +No= (n*fM)/4; +disp('Output Noise Strength is '+string(No)+' dB'); + +//Let SNR at filter output be SNR +SNR= So / No; +disp('Output SNR is '+string(SNR)+' dB'); + +//By reduction of message signal Bandwidth the Output Noise strength changes +//Let the new output noise strength, bandwidth and SNR be be No_new, fM_new and SNR_new respectively +fM_new = 75/100*fM; +No_new = n*fM_new/4; +SNR_new = So / No_new; + +disp('Changed SNR is '+string(SNR_new)+' dB'); + + diff --git a/3161/CH8/EX8.2/Ex8_2.sce b/3161/CH8/EX8.2/Ex8_2.sce new file mode 100644 index 000000000..b9feabfd0 --- /dev/null +++ b/3161/CH8/EX8.2/Ex8_2.sce @@ -0,0 +1,37 @@ +clc; +//page 436 +//problem 8.2 + +//Given frequency range fc - fm = 0.995MHz to fc + fm = 1.005Mhz +//Double side message bandwidth is fM +fM= (1.005 - 0.995)*10^6 / 2; +disp('Message bandwidth is '+string(fM)+' Hz'); +//The textbook contains a calculation error here. +//The calculated fM in the textbook is 500kHz instead of 5kHz, +//Following which all the solutions obtained here are erroneous. + +//Given input signal strength Si= 1mW +//Let output signal strength be So +//So=Si/2 +Si= 10^(-3); +So= Si/2; +disp('Signal output strength is '+string(So)+' dB'); + +//Given Power Spectral Density n = 10^-9 W/Hz +//Let output noise strength be No +n= 10^-9; +No= (n*fM)/2; +disp('Output Noise Strength is '+string(No)+' dB'); + +//Let SNR at filter output be SNR +SNR= So / No; +disp('Output SNR of the DSB-SC wave is '+string(SNR)+' dB'); + +//By reduction of message signal Bandwidth the Output Noise strength changes +//Let the new output noise strength, bandwidth and SNR be be No_new, fM_new and SNR_new respectively +fM_new = 75/100*fM; +No_new = n*fM_new/4; +SNR_new = So / No_new; +disp('Changed SNR is '+string(SNR_new)+' dB'); + + diff --git a/3161/CH8/EX8.3/Ex8_3.sce b/3161/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..042dfa9ce --- /dev/null +++ b/3161/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,24 @@ +clc; +//page 446 +//problem 8.3 + +//Given bandwidth of signal is fM = 4kHZ +fM = 4*10^3; +//Given power spectral density of white noise n = 2*10^-9 W/Hz +n = 2*10^-9; +//Also given that minimum output SNR is 40dB +//Signal undergoes a loss of 30dB + +//For SSB: +// Required minimum output SNR = Si_min_SSB / (n*fM) = 40 dB = 10^4 +Si_min_SSB = (10^4)*n*fM; +// Required minimum signal strength at transmitter output Si_tran = Si_min * 30 dB +Si_tran_SSB = Si_min_SSB * 10^3; +disp('Required minimum SSB signal strength at transmitter output is'+string(Si_tran_SSB)+' W'); + +//For DSB-SC: +// Required minimum output SNR = (Si_min_DSB/3) / (n*fM) = 40 dB = 10^4 +Si_min_DSB = 3*(10^4)*n*fM; +// Required minimum signal strength at transmitter output Si_tran = Si_min * 30 dB +Si_tran_DSB = Si_min_DSB * 10^3; +disp('Required minimum DSB signal strength at transmitter output is'+string(Si_tran_DSB)+' W'); diff --git a/3161/CH8/EX8.4/Ex8_4.sce b/3161/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..7bf00c03b --- /dev/null +++ b/3161/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,33 @@ +clc; +//page 447 +//problem 8.4 + +//Given bandwidth of signal is fM = 60 kHZ +fM = 60*10^3; + +//Given power spectral density of white noise n = 2*10^-6 W/Hz +n = 2*10^-6; + +//Given time average of square of mssg signal P = 0.1W +P = 0.1; + +//Noise power at input baseband range NM +NM = n * fM; + +//Threshold occurs at carrier power Pc = 2.9 * NM +Pc_Threshold = 2.9 * NM; + +//For carrier power Pc = 10W, output SNR +Pc = 10; +SNRo = Pc * P / NM ; +disp('Output SNR is '+string(SNRo)+' dB'); + +//Carrier power is reduced by 100 times making the new power Pc_new +Pc_new = Pc / 100; + +//In the given solutions the NM value is 1.2W instead of 0.12W +//The corect answer is 0.0925926 instead of 0.000926 +SNR_new = (4/3) * P * (Pc_new/NM)^2; +disp('Output SNR when carrier power is reduced is '+string(SNR_new)+' dB'); + + -- cgit