From f35ea80659b6a49d1bb2ce1d7d002583f3f40947 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:38:01 +0530 Subject: updated the code --- 284/CH10/EX10.10/ex_10.sce | 27 ++++++++++++++------------- 284/CH10/EX10.6/ex_6.sce | 35 ++++++++++++++++++----------------- 284/CH10/EX10.7/ex_7.sce | 34 +++++++++++++++++----------------- 284/CH11/EX11.1/ex1.sce | 24 +++++++++++++----------- 284/CH11/EX11.3/ex3.sce | 21 +++++++++++---------- 284/CH11/EX11.4/ex4.sce | 30 ++++++++++++++++-------------- 284/CH11/EX11.5/ex_5.sce | 40 ++++++++++++++++++++-------------------- 284/CH12/EX12.8/ex8.sce | 38 +++++++++++++++++++------------------- 284/CH13/EX13.4/ex4.sce | 12 ++++++------ 284/CH13/EX13.7/ex7.sce | 21 +++++++++++---------- 284/CH3/EX3.13/ex_13.sce | 21 ++++++++++++--------- 284/CH6/EX6.3/ex_3.sce | 24 +++++++++++++----------- 284/CH6/EX6.5/ex_5.sce | 28 +++++++++++++++------------- 284/CH7/EX7.2/ex_2.sce | 27 ++++++++++++++------------- 284/CH8/EX8.1/ex_1.sce | 26 ++++++++++++++------------ 284/CH8/EX8.5/ex_5.sce | 45 +++++++++++++++++++++++---------------------- 16 files changed, 236 insertions(+), 217 deletions(-) (limited to '284') diff --git a/284/CH10/EX10.10/ex_10.sce b/284/CH10/EX10.10/ex_10.sce index 3d45afa3e..87bc3ca89 100755 --- a/284/CH10/EX10.10/ex_10.sce +++ b/284/CH10/EX10.10/ex_10.sce @@ -1,13 +1,14 @@ -// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor -//Caption_Substrate bias effects -//Ex_10//page 478 -T=300 -Na=3*10^16 -tox=500*10^-8 -VSB=1 -ni=1.5*10^10 //intrinsic carrier concentration -phi_fp=0.0259*log(Na/ni) -eps_ox=3.9*8.85*10^-14 -Cox=eps_ox/tox -delVT=(2*e*eps*Na)^0.5*((2*phi_fp+VSB)^0.5-(2*phi_fp)^0.5)/Cox -printf('The change in threshold voltage is %1.2fV',delVT) +// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor +//Caption_Substrate bias effects +//Ex_10//page 478 +e = 1.6*10^-19; +T=300 +Na=3*10^16 +tox=500*10^-8 +VSB=1 +ni=1.5*10^10 //intrinsic carrier concentration +phi_fp=0.0259*log(Na/ni) +eps_ox=3.9*8.85*10^-14 +Cox=eps_ox/tox +delVT=(2*e*eps_ox*Na)^0.5*((2*phi_fp+VSB)^0.5-(2*phi_fp)^0.5)/Cox +printf('The change in threshold voltage is %1.2fV',delVT) \ No newline at end of file diff --git a/284/CH10/EX10.6/ex_6.sce b/284/CH10/EX10.6/ex_6.sce index 0bd83a43b..457a28921 100755 --- a/284/CH10/EX10.6/ex_6.sce +++ b/284/CH10/EX10.6/ex_6.sce @@ -1,17 +1,18 @@ -// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor -//Caption_Threshold voltage voltage -//Ex_6//page 448 -tox=650*10^-8 -eps=11.7*8.85*10^-14 -eps_ox=3.9*8.85*10^-14 -Qss=10^10 -Vtp=-1 -Nd=2.5*10^14 -ni=1.5*10^10 //intrinsic carrier concentration -phi_tn=0.0259*log(Nd/ni) -xdt=(4*eps*phi_tn/(e*Nd))^0.5 -QSD_MAX=e*Nd*xdt; -phi_ms=-0.35 -Vtp2=(-QSD_MAX-Qss*e)*(tox/eps_ox)+phi_ms-2*phi_tn -q=abs(Vtp2)==Vtp -printf('Since Vtp2=Vtp, it is essentially equal to the desired result') +// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor +//Caption_Threshold voltage voltage +//Ex_6//page 448 +e = 1.6*10^-19; +tox=650*10^-8 +eps=11.7*8.85*10^-14 +eps_ox=3.9*8.85*10^-14 +Qss=10^10 +Vtp=-1 +Nd=2.5*10^14 +ni=1.5*10^10 //intrinsic carrier concentration +phi_tn=0.0259*log(Nd/ni) +xdt=(4*eps*phi_tn/(e*Nd))^0.5 +QSD_MAX=e*Nd*xdt; +phi_ms=-0.35 +Vtp2=(-QSD_MAX-Qss*e)*(tox/eps_ox)+phi_ms-2*phi_tn +q=abs(Vtp2)==Vtp +printf('Since Vtp2=Vtp, it is essentially equal to the desired result') \ No newline at end of file diff --git a/284/CH10/EX10.7/ex_7.sce b/284/CH10/EX10.7/ex_7.sce index 9fa60069d..61b870c43 100755 --- a/284/CH10/EX10.7/ex_7.sce +++ b/284/CH10/EX10.7/ex_7.sce @@ -1,17 +1,17 @@ -// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor -//Caption_Capacitance Voltage characteristics -//Ex_7//page 455 -Na=10^16 -tox=550*10^-8 //oxide thickness -eps=11.7*8.85*10^-14 -eps_ox=3.9*8.85*10^-14 -Cox=eps_ox/tox*10^9 -ni=1.5*10^10 //intrinsic carrier concentration -phi_fp=0.0259*log(Na/ni) -xdt=(4*eps*phi_fp/(e*Na))^0.5 -Cmin=eps_ox/(tox+(eps_ox/eps)*xdt)*10^9 -r=Cmin/Cox -CFB=eps_ox/(tox+(eps_ox/eps)*(0.0259*eps/(e*Na))^0.5) *10^9 //flat band capacitance -r2=CFB/Cox -printf('The value of oxide capacitance, minimum capacitance and flat band capacitance are %1.2f nF, %1.2f nF and %1.2f nF respectively',Cox,Cmin,CFB) - \ No newline at end of file +// Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor +//Caption_Capacitance Voltage characteristics +//Ex_7//page 455 +e = 1.6*10^-19; +Na=10^16 +tox=550*10^-8 //oxide thickness +eps=11.7*8.85*10^-14 +eps_ox=3.9*8.85*10^-14 +Cox=eps_ox/tox*10^9 +ni=1.5*10^10 //intrinsic carrier concentration +phi_fp=0.0259*log(Na/ni) +xdt=(4*eps*phi_fp/(e*Na))^0.5 +Cmin=eps_ox/(tox+(eps_ox/eps)*xdt)*10^9 +r=Cmin/Cox +CFB=eps_ox/(tox+(eps_ox/eps)*(0.0259*eps/(e*Na))^0.5) *10^9 //flat band capacitance +r2=CFB/Cox +printf('The value of oxide capacitance, minimum capacitance and flat band capacitance are %1.2f nF, %1.2f nF and %1.2f nF respectively',Cox,Cmin,CFB) \ No newline at end of file diff --git a/284/CH11/EX11.1/ex1.sce b/284/CH11/EX11.1/ex1.sce index 0e5556add..53a65c8e2 100755 --- a/284/CH11/EX11.1/ex1.sce +++ b/284/CH11/EX11.1/ex1.sce @@ -1,11 +1,13 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts -//Caption_Mobility variation -//Ex_1//page 509 -T=300 -Na=3*10^16 -ni=1.5*10^10 //intrinsic carrier concentration -phi_fp=0.0259*log(Na/ni) -xdt=(4*eps*phi_fp/(e*Na))^0.5 -QSD_MAX=e*Na*xdt; -Eeff=1/eps*QSD_MAX -printf('Effective electric field at threshold is %1.2f V/cm',Eeff) +// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Mobility variation +//Ex_1//page 509 +eps=11.7*8.85*10^-14 +e=1.6*10^-19 +T=300 +Na=3*10^16 +ni=1.5*10^10 //intrinsic carrier concentration +phi_fp=0.0259*log(Na/ni) +xdt=(4*eps*phi_fp/(e*Na))^0.5 +QSD_MAX=e*Na*xdt; +Eeff=1/eps*QSD_MAX +printf('Effective electric field at threshold is %1.2f V/cm',Eeff) \ No newline at end of file diff --git a/284/CH11/EX11.3/ex3.sce b/284/CH11/EX11.3/ex3.sce index ab26815fa..779808339 100755 --- a/284/CH11/EX11.3/ex3.sce +++ b/284/CH11/EX11.3/ex3.sce @@ -1,11 +1,12 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts -//Caption_Narrow channel effects -//Ex_3//page 520 -Na=3*10^16 -tox=450*10^-8 //oxide thickness -fi=%pi/2 //fitting parameter -delVt=0.2 -Cox=7.67*10^-8 //oxide capacitance -xdt=0.18*10^-4 -W=10^4*e*Na*(fi*xdt^2)/(Cox*delVt) +// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Narrow channel effects +//Ex_3//page 520 +e = 1.6*10^-19; +Na=3*10^16 +tox=450*10^-8 //oxide thickness +fi=%pi/2 //fitting parameter +delVt=0.2 +Cox=7.67*10^-8 //oxide capacitance +xdt=0.18*10^-4 +W=10^4*e*Na*(fi*xdt^2)/(Cox*delVt) printf('The channel width that will limit the threshold voltage is %1.2f micrometer',W) \ No newline at end of file diff --git a/284/CH11/EX11.4/ex4.sce b/284/CH11/EX11.4/ex4.sce index 475ba4b7d..28d62f6a6 100755 --- a/284/CH11/EX11.4/ex4.sce +++ b/284/CH11/EX11.4/ex4.sce @@ -1,14 +1,16 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts -//Caption_Breakdown voltage -//Ex_4//page 527 -Nd=10^19 //donor concentration -Na=10^16 //acceptor concentration -L=1.2*10^-4 //channel length -ni=1.5*10^10 //intrinsic carrier concentration -Vbi=0.0259*log(Na*Nd/ni^2) -xdo=(2*eps*Vbi/(e*Na))^0.5 //zero biased source-substrate pn junction width -//xd=(2*eps*(VbiVDS)/(e*Na))^0.5 //reverse biased drain substrate pn junction width -xd=L-xdo //at punch through -VbiVDS=xd^2*e*Na/(2*eps) //Vbi+VDS -VDS=VbiVDS-Vbi -printf('The punch through voltage is %1.1f V',VDS) +// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Breakdown voltage +//Ex_4//page 527 +eps=11.7*8.85*10^-14 +e=1.6*10^-19; +Nd=10^19 //donor concentration +Na=10^16 //acceptor concentration +L=1.2*10^-4 //channel length +ni=1.5*10^10 //intrinsic carrier concentration +Vbi=0.0259*log(Na*Nd/ni^2) +xdo=(2*eps*Vbi/(e*Na))^0.5 //zero biased source-substrate pn junction width +//xd=(2*eps*(VbiVDS)/(e*Na))^0.5 //reverse biased drain substrate pn junction width +xd=L-xdo //at punch through +VbiVDS=xd^2*e*Na/(2*eps) //Vbi+VDS +VDS=VbiVDS-Vbi +printf('The punch through voltage is %1.1f V',VDS) \ No newline at end of file diff --git a/284/CH11/EX11.5/ex_5.sce b/284/CH11/EX11.5/ex_5.sce index 4405168c9..0f0dd3f7b 100755 --- a/284/CH11/EX11.5/ex_5.sce +++ b/284/CH11/EX11.5/ex_5.sce @@ -1,20 +1,20 @@ -// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts -//Caption_Lightly doped drain transistor -//Ex_5//page 531 -tox=500*10^-8 -VFBO=-1.25 //initial flat band voltage -e=1.6*10^-19 -eps_ox=3.9*8.85*10^-14 -ni=1.5*10^10 //intrinsic carrier concentration -VT=0.70 -Na=5*10^15 -phi_fpo=0.0259*log(Na/ni) -xdto=(4*eps*phi_fpo/(e*Na))^0.5 -Cox=eps_ox/tox -VTO=VFBO+2*phi_fpo+(e*Na*xdto)/Cox -x=VT-VTO -Dt=Cox*x/e //implant dose -xt=0.15*10^-4 //depth to which uniform implant extends -Nsa=Dt/xt -Ns=Nsa+Na -printf('The required implant dose to achieve the desired threshold voltage is %1.2f per cm^2',Dt) +// Chapter 11_ Metal-Oxide-Semiconductor Field Effect Transistor:Additional Concepts +//Caption_Lightly doped drain transistor +//Ex_5//page 531 +tox=500*10^-8 +VFBO=-1.25 //initial flat band voltage +e=1.6*10^-19 +eps_ox=3.9*8.85*10^-14 +ni=1.5*10^10 //intrinsic carrier concentration +VT=0.70 +Na=5*10^15 +phi_fpo=0.0259*log(Na/ni) +xdto=(4*eps_ox*phi_fpo/(e*Na))^0.5 +Cox=eps_ox/tox +VTO=VFBO+2*phi_fpo+(e*Na*xdto)/Cox +x=VT-VTO +Dt=Cox*x/e //implant dose +xt=0.15*10^-4 //depth to which uniform implant extends +Nsa=Dt/xt +Ns=Nsa+Na +printf('The required implant dose to achieve the desired threshold voltage is %1.2f per cm^2',Dt) \ No newline at end of file diff --git a/284/CH12/EX12.8/ex8.sce b/284/CH12/EX12.8/ex8.sce index c313f06da..7885266d1 100755 --- a/284/CH12/EX12.8/ex8.sce +++ b/284/CH12/EX12.8/ex8.sce @@ -1,19 +1,19 @@ -// Chapter 12_The junction field effect transistor -//Caption_The MESFET-Channel length modulation -//Ex_8//page 573 -Nd=3*10^15 -eps=8.85*10^-14*11.7 -L=10 -ID1=4 -VDSsat=0 //assume -VDS1=VDSsat+2 -VDS2=VDSsat+2.5 - -delL2=10^4*(2*eps*(VDS2-VDSsat)/(e*Nd))^0.5 //change in length -delL1=10^4*(2*eps*(VDS1-VDSsat)/(e*Nd))^0.5 //change in length -//drain currents are -ID22=ID1*(L/(L-0.5*delL2)) -ID11=ID1*(L/(L-0.5*delL1)) -rds=(VDS2-VDS1)/(ID22-ID11) -printf('The small signal output resistance at the drain terminal due to channel length modulation effects is %1.1f kohm',rds) - +// Chapter 12_The junction field effect transistor +//Caption_The MESFET-Channel length modulation +//Ex_8//page 573 +Nd=3*10^15 +eps=8.85*10^-14*11.7 +L=10; +e = 1.6*10^-19; +ID1=4 +VDSsat=0 //assume +VDS1=VDSsat+2 +VDS2=VDSsat+2.5 + +delL2=10^4*(2*eps*(VDS2-VDSsat)/(e*Nd))^0.5 //change in length +delL1=10^4*(2*eps*(VDS1-VDSsat)/(e*Nd))^0.5 //change in length +//drain currents are +ID22=ID1*(L/(L-0.5*delL2)) +ID11=ID1*(L/(L-0.5*delL1)) +rds=(VDS2-VDS1)/(ID22-ID11) +printf('The small signal output resistance at the drain terminal due to channel length modulation effects is %1.1f kohm',rds) \ No newline at end of file diff --git a/284/CH13/EX13.4/ex4.sce b/284/CH13/EX13.4/ex4.sce index c35409336..b63e40d14 100755 --- a/284/CH13/EX13.4/ex4.sce +++ b/284/CH13/EX13.4/ex4.sce @@ -1,7 +1,7 @@ -// Chapter 13_Optical Devices -//Caption_Solar concentration -//Ex_4//page 605 -JL==150*10^-3 //PHOTOCURRENT DENSITY -Js=3.6*10^-11 //reverse saturation current density -Voc=0.0259*log(1+JL/Js) +// Chapter 13_Optical Devices +//Caption_Solar concentration +//Ex_4//page 605 +JL=150*10^-3 //PHOTOCURRENT DENSITY +Js=3.6*10^-11 //reverse saturation current density +Voc=0.0259*log(1+JL/Js) printf('Open circuit voltage when solar concentration is used is %1.3f V',Voc) \ No newline at end of file diff --git a/284/CH13/EX13.7/ex7.sce b/284/CH13/EX13.7/ex7.sce index 6d3a97e1b..2909d12af 100755 --- a/284/CH13/EX13.7/ex7.sce +++ b/284/CH13/EX13.7/ex7.sce @@ -1,10 +1,11 @@ -// Chapter 13_Optical Devices -//Caption_PIN Photodiode -//Ex_7//page 618 -W=20*10^-4 //intrinsic region width -phio=10^17 //photon flux -alpha=10^3 //absorption coefficient -GL1=alpha*phio //generation rate of electron hole pair at the front region -GL2=GL1*exp(-alpha*W) -JL=1000*e*phio*(1-exp(-alpha*W)) //photocurrent density -printf('The photocurrent density in PIN photodiode is %1.1f mA/cm^2 ',JL) +// Chapter 13_Optical Devices +//Caption_PIN Photodiode +//Ex_7//page 618 +e = 1.6*10^-19; +W=20*10^-4 //intrinsic region width +phio=10^17 //photon flux +alpha=10^3 //absorption coefficient +GL1=alpha*phio //generation rate of electron hole pair at the front region +GL2=GL1*exp(-alpha*W) +JL=1000*e*phio*(1-exp(-alpha*W)) //photocurrent density +printf('The photocurrent density in PIN photodiode is %1.1f mA/cm^2 ',JL) \ No newline at end of file diff --git a/284/CH3/EX3.13/ex_13.sce b/284/CH3/EX3.13/ex_13.sce index ea6191d36..c45fefecd 100755 --- a/284/CH3/EX3.13/ex_13.sce +++ b/284/CH3/EX3.13/ex_13.sce @@ -1,9 +1,12 @@ -// Chapter 3_The Semiconductor in Equilibrium -//Caption_Position of Fermi Energy level -//Ex_13//page 116 -T=300 //temperature in kelvin -Na=10^16 // acceptor carrier impurity in per cm cube -Ef=0.20 //Fermi energy is Ef eV below the conduction band edge -Nc=2.8*(10^19) -Nd=Na+(Nc*exp(-Ef/0.0259)) -printf('The require donor impurity concentration is %fd per cm cube',Nd) \ No newline at end of file +// Chapter 3_The Semiconductor in Equilibrium +//Caption_Position of Fermi Energy level +//Ex_14//page 121 +T=300 //temperature in kelvin +Ef=0.20; +kT=0.0259 +ni=1.5*(10^10) //intrinsic carrier concentration +Efa=3*kT //Ef-Ea=3kT +Eav=0.045 +Efif=Ef/2-(Eav)-(Efa) //The position of fermi level at the maximum doping +Na=exp(Efif/kT)*ni +printf('Maximum doping is %3.2f d per cm cube',Na) \ No newline at end of file diff --git a/284/CH6/EX6.3/ex_3.sce b/284/CH6/EX6.3/ex_3.sce index 0c63d7842..bd8ce1396 100755 --- a/284/CH6/EX6.3/ex_3.sce +++ b/284/CH6/EX6.3/ex_3.sce @@ -1,12 +1,14 @@ -// Chapter 6_The pn junction -//Caption_Space charge width -//Ex_3//page 227 -Na=10^16 //acceptor ion concentration -T=300 //temperature in kelvin -Nd=10^15 -ni=1.5*(10^10) //intrinsic ion concentration -Vr=5 //Reverse applied voltage -Vbi=0.635 -V=Vr+Vbi -W=(2*eps*V/e*(Na+Nd)/(Na*Nd))^0.5 +// Chapter 6_The pn junction +//Caption_Space charge width +//Ex_3//page 227 +eps=11.7*8.85*(10^-14); +e=1.6*(10^-19); +Na=10^16 //acceptor ion concentration +T=300 //temperature in kelvin +Nd=10^15 +ni=1.5*(10^10) //intrinsic ion concentration +Vr=5 //Reverse applied voltage +Vbi=0.635 +V=Vr+Vbi +W=(2*eps*V/e*(Na+Nd)/(Na*Nd))^0.5 printf('The space charge width is %f cm ',W) \ No newline at end of file diff --git a/284/CH6/EX6.5/ex_5.sce b/284/CH6/EX6.5/ex_5.sce index 474bb22d1..20dfa6b5d 100755 --- a/284/CH6/EX6.5/ex_5.sce +++ b/284/CH6/EX6.5/ex_5.sce @@ -1,14 +1,16 @@ -// Chapter 6_The pn junction -//Caption_Junction capacitance -//Ex_5//page 230 -Na=10^16 //acceptor ion concentration -T=300 //temperature in kelvin -Nd=10^15 -ni=1.5*(10^10) //intrinsic ion concentration -Vr=5 //Reverse applied voltage -Vbi=0.635 -V=Vr+Vbi -C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5 -A=10^-4 //Area of the pn junction -Ca=A*C*10^12 +// Chapter 6_The pn junction +//Caption_Junction capacitance +//Ex_5//page 230 +eps=11.7*8.85*(10^-14); +e=1.6*(10^-19); +Na=10^16 //acceptor ion concentration +T=300 //temperature in kelvin +Nd=10^15 +ni=1.5*(10^10) //intrinsic ion concentration +Vr=5 //Reverse applied voltage +Vbi=0.635 +V=Vr+Vbi +C=(e*eps*Na*Nd/(2*(V)*(Na+Nd)))^0.5 +A=10^-4 //Area of the pn junction +Ca=A*C*10^12 printf('The junction capacitance for the given semiconductor is %1.3f pF',Ca) \ No newline at end of file diff --git a/284/CH7/EX7.2/ex_2.sce b/284/CH7/EX7.2/ex_2.sce index 9ec93a934..715749372 100755 --- a/284/CH7/EX7.2/ex_2.sce +++ b/284/CH7/EX7.2/ex_2.sce @@ -1,13 +1,14 @@ -// Chapter 7_The pn junction Diode -//Caption_pn Junction current -//Ex_2//page 258 -Na=10^16 //acceptor impurity -Nd=10^16 // donor impurity -ni=1.5*10^10 //intrinsic concentration -Dn=25 -Dp=10 -tau_po=5*10^-7 -tau_no=5*10^-7 -epsr=11.7 -Js=e*ni^2*((1/Na*(Dn/tau_no)^0.5)+(1/Nd)*(Dp/tau_po)^0.5)*10^9 -printf('Ideal reverse satureation current density is %f nA/cm',Js) +// Chapter 7_The pn junction Diode +//Caption_pn Junction current +//Ex_2//page 258 +e = 1.6*10^-19; +Na=10^16 //acceptor impurity +Nd=10^16 // donor impurity +ni=1.5*10^10 //intrinsic concentration +Dn=25 +Dp=10 +tau_po=5*10^-7 +tau_no=5*10^-7 +epsr=11.7 +Js=e*ni^2*((1/Na*(Dn/tau_no)^0.5)+(1/Nd)*(Dp/tau_po)^0.5)*10^9 +printf('Ideal reverse saturation current density is %f nA/cm',Js) \ No newline at end of file diff --git a/284/CH8/EX8.1/ex_1.sce b/284/CH8/EX8.1/ex_1.sce index a564c8681..2b4144341 100755 --- a/284/CH8/EX8.1/ex_1.sce +++ b/284/CH8/EX8.1/ex_1.sce @@ -1,13 +1,15 @@ -// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions -//Caption_Shottky barrier diode -//Ex_1//page 308 -T=300 //temperature in kelvin -Nd=10^16 //donor impurity -phi_m=4.55 //metal work function for tungsten -xi=4.01 //electron affinity for silicon -phi_bo=phi_m-xi -phi_n=0.0259*log(2.8*10^19/Nd) -Vbi=phi_bo-phi_n -xn=(2*eps*Vbi/(e*Nd))^0.5 //space charge width at zero bias -Emax=e*Nd*xn/eps //maximum electric field +// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions +//Caption_Shottky barrier diode +//Ex_1//page 308 +eps=13.1*8.85*10^-14; +e = 1.6*10^-19; +T=300 //temperature in kelvin +Nd=10^16 //donor impurity +phi_m=4.55 //metal work function for tungsten +xi=4.01 //electron affinity for silicon +phi_bo=phi_m-xi +phi_n=0.0259*log(2.8*10^19/Nd) +Vbi=phi_bo-phi_n +xn=(2*eps*Vbi/(e*Nd))^0.5 //space charge width at zero bias +Emax=e*Nd*xn/eps //maximum electric field printf('Theoritical barrier height is %f V, built-in potential barrier is %f V and maximium electric field is %f V/cm', phi_bo,phi_n,Emax) \ No newline at end of file diff --git a/284/CH8/EX8.5/ex_5.sce b/284/CH8/EX8.5/ex_5.sce index adf372723..01a4252f9 100755 --- a/284/CH8/EX8.5/ex_5.sce +++ b/284/CH8/EX8.5/ex_5.sce @@ -1,23 +1,24 @@ -// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions -//Caption_Comparison of the schottky barrier diode and the pn junction diode -//Ex_5/page 319 -e_phi_bn=0.67 -A=114 //effective richardson constant -T=300 -Jst=A*T^2*exp(-e_phi_bn/0.0259) -//if we neglect the barrier lowering effect, we have for the schottky barrier diode -//for a pn junction -Na=10^18 -Nd=10^16 -Dp=10 -Dn=25 -tau_po=10^-7 -tau_no=10^-7 -Lp=(Dp*tau_po)^0.5 -Ln=(Dn*tau_no)^0.5 -pno=2.25*10^4 -npo=2.25*10^2 -//the ideal reverse saturation current density of the pn junction diode can be determined as -Js=e*Dn*npo/Ln+(e*Dp*pno/Lp) -J=10^9*(Js+5.7*10^-13) +// Chapter 8_Metal Semiconductor and Semiconductor heterojunctions +//Caption_Comparison of the schottky barrier diode and the pn junction diode +//Ex_5/page 319 +e = 1.6*10^-19; +e_phi_bn=0.67 +A=114 //effective richardson constant +T=300 +Jst=A*T^2*exp(-e_phi_bn/0.0259) +//if we neglect the barrier lowering effect, we have for the schottky barrier diode +//for a pn junction +Na=10^18 +Nd=10^16 +Dp=10 +Dn=25 +tau_po=10^-7 +tau_no=10^-7 +Lp=(Dp*tau_po)^0.5 +Ln=(Dn*tau_no)^0.5 +pno=2.25*10^4 +npo=2.25*10^2 +//the ideal reverse saturation current density of the pn junction diode can be determined as +Js=e*Dn*npo/Ln+(e*Dp*pno/Lp) +J=10^9*(Js+5.7*10^-13) printf('Reverse saturation current density for schottky baarier diode is %f A/cm^2 and for pn junction is %f nA/cm^2',Jst,J) \ No newline at end of file -- cgit