From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2657/CH18/EX18.8/Ex18_8.sce | 53 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100755 2657/CH18/EX18.8/Ex18_8.sce (limited to '2657/CH18/EX18.8') diff --git a/2657/CH18/EX18.8/Ex18_8.sce b/2657/CH18/EX18.8/Ex18_8.sce new file mode 100755 index 000000000..33a558f21 --- /dev/null +++ b/2657/CH18/EX18.8/Ex18_8.sce @@ -0,0 +1,53 @@ +//Calculations on six cylinder diesel engine +clc,clear +//Given: +n=6 //Number of cylinders +function bp=f(W),bp=W*N/20000,endfunction //Power law of engine +d=95,l=120 //Bore and stroke in mm +N=2400 //Engine speed in rpm +C_H=83/17 //Carbon Hydrogen ratio by mass in fuel +d_o=30 //Diameter of orifice in mm +Cd=0.6 //Orifice coefficient of discharge +P=550 //Net load on brake in N +P1=750 //Ambient pressure in mm of Hg +T1=25+273 //Ambient temperature in K +deltaP_o=14.5 //Head over orifice in cm of Hg +s=0.831 //Specific gravity of fuel +t=19.3 //Time to use 100 cc fuel in s +V_f=100 //Volume of fuel used in t seconds in cc +//Solution: +//(a) +bp=f(P) //Brake power at brake load in kW +A=%pi/4*d^2*10^-6 //Area of cylinder in m^2 +bmep=bp*1000/(n*l/1000*A*N/(2*60)) //Brake mean effective pressure in Pascal +//(b) +T=bp*1000/(2*%pi*(N/60)) //Brake torque in Nm +//(c) +rho_f=s*1000 //Fuel density in kg/m^3 +m_f=V_f*10^-6/t*3600*rho_f //Fuel flow rate in kg/hr +bsfc=m_f/bp //Brake specific fuel consumption in kg/kWh +//(e) +R=0.287 //Specific gas constant in kJ/kgK +P1=P1/760*1.01325 //Ambient pressure in bar +rho_a=P1*10^5/(R*10^3*T1) //Mass density of air in kg/m^3 +deltaP_o=13.6*1000*9.81*deltaP_o/100 //Pressure drop across orifice in N/m^2 +A_o=%pi/4*d_o^2*10^-6 //Area of orifice in m^2 +V_a=Cd*A_o*sqrt(2*deltaP_o/rho_a) //Air inhaled in m^3/s +V_s=(%pi/4)*d^2*l*n*N/(2*60)*10^-9 //Swept volume in m^3/s +eta_vol=V_a/V_s //Volumetric efficiency +//(d) +pH=17,pC=pH*C_H //Percentage of Hydrogen and Carbon in fuel +pO=23.3 //Percentage of Oxygen in air +H=1,C=12,O=16 //Atomic masses of Hydrogen, Carbon, Oxygen in gm +mO2=pC/100*(2*O/C)+pH/100*(O/(2*H)) //Oxygen required in kg/kg of fuel +m_a=mO2/(pO/100) //Mass of air in kg/kg of fuel +A_F_t=m_a //Theoritical air fuel ratio +m_a_act=V_a*rho_a //Actual air mass flow rate in kg/s +A_F_act=m_a_act/m_f*3600 //Actual air fuel ratio +P_e=(A_F_act-A_F_t)/A_F_t*100 //Percentage excess air +//Results: +printf("\n (a)The brake mean effective pressure, bmep = %.3f bar",bmep*10^-5) +printf("\n (b)The brake torque, T = %.1f Nm",T) +printf("\n (c)The brake specific fuel consumption, bsfc = %.3f kg/kWh",bsfc) +printf("\n (d)The percentage excess air = %.1f percent",P_e) +printf("\n (e)The volumetric efficiency, eta_vol = %.1f percent\n\n",eta_vol*100) -- cgit