From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2642/CH8/EX8.6/Ex8_6.sce | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100755 2642/CH8/EX8.6/Ex8_6.sce (limited to '2642/CH8/EX8.6') diff --git a/2642/CH8/EX8.6/Ex8_6.sce b/2642/CH8/EX8.6/Ex8_6.sce new file mode 100755 index 000000000..6b283da42 --- /dev/null +++ b/2642/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,34 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 8 : STARTING, CONTROL AND TESTING OF AN INDUCTION MOTOR +// Example : 8.5 + +clc;clear; // clears the console and command history + +// Given data +V = 210 // supply voltage in V +f = 50 // supply frequency in Hz +P = 4 // number of poles +P_0 = 400 // i/p power in W +I_0 = 1.2 // line current in A +V_0 = 210 // line voltage +P_fw = 150 // total friction and windage losses in W +R = 2.2 // stator resistance between two terminals in ohm + +// caclulations +R_1 = R/2 // per phase stator resistance in ohm +P_scu = 3*I_0^2*R_1 // copper loss in W +P_core = P_0-P_fw-P_scu // stator core loss in W +R_0 = (V_0/sqrt(3))^2/(P_core/3) // no-load resistance in ohm +// alternate approach +phi_0 = acosd(P_core/(sqrt(3)*V_0*I_0)) // power factor angle +X_0 = (V_0/sqrt(3))/(I_0*sind(phi_0)) // magnetizing reactance per phase in ohm + +// display the result +disp("Example 8.6 solution"); +printf(" \n No-load resistance \n R_0 = %.1f ohm \n", R_0 ); +printf(" \n Magnetizing reactance per phase \n X_0 = %.0f ohm \n", X_0 ); + -- cgit