From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2642/CH3/EX3.1/Ex3_1.sce | 26 ++++++++++++++++++++++++++ 2642/CH3/EX3.10/Ex3_10.sce | 38 ++++++++++++++++++++++++++++++++++++++ 2642/CH3/EX3.11/Ex3_11.sce | 29 +++++++++++++++++++++++++++++ 2642/CH3/EX3.12/Ex3_12.sce | 42 ++++++++++++++++++++++++++++++++++++++++++ 2642/CH3/EX3.13/Ex3_13.sce | 29 +++++++++++++++++++++++++++++ 2642/CH3/EX3.14/Ex3_14.sce | 28 ++++++++++++++++++++++++++++ 2642/CH3/EX3.15/Ex3_15.sce | 36 ++++++++++++++++++++++++++++++++++++ 2642/CH3/EX3.16/Ex3_16.sce | 33 +++++++++++++++++++++++++++++++++ 2642/CH3/EX3.17/Ex3_17.sce | 45 +++++++++++++++++++++++++++++++++++++++++++++ 2642/CH3/EX3.2/Ex3_2.sce | 22 ++++++++++++++++++++++ 2642/CH3/EX3.3/Ex3_3.sce | 27 +++++++++++++++++++++++++++ 2642/CH3/EX3.4/Ex3_4.sce | 26 ++++++++++++++++++++++++++ 2642/CH3/EX3.5/Ex3_5.sce | 28 ++++++++++++++++++++++++++++ 2642/CH3/EX3.6/Ex3_6.sce | 31 +++++++++++++++++++++++++++++++ 2642/CH3/EX3.7/Ex3_7.sce | 33 +++++++++++++++++++++++++++++++++ 2642/CH3/EX3.8/Ex3_8.sce | 30 ++++++++++++++++++++++++++++++ 2642/CH3/EX3.9/Ex3_9.sce | 34 ++++++++++++++++++++++++++++++++++ 17 files changed, 537 insertions(+) create mode 100755 2642/CH3/EX3.1/Ex3_1.sce create mode 100755 2642/CH3/EX3.10/Ex3_10.sce create mode 100755 2642/CH3/EX3.11/Ex3_11.sce create mode 100755 2642/CH3/EX3.12/Ex3_12.sce create mode 100755 2642/CH3/EX3.13/Ex3_13.sce create mode 100755 2642/CH3/EX3.14/Ex3_14.sce create mode 100755 2642/CH3/EX3.15/Ex3_15.sce create mode 100755 2642/CH3/EX3.16/Ex3_16.sce create mode 100755 2642/CH3/EX3.17/Ex3_17.sce create mode 100755 2642/CH3/EX3.2/Ex3_2.sce create mode 100755 2642/CH3/EX3.3/Ex3_3.sce create mode 100755 2642/CH3/EX3.4/Ex3_4.sce create mode 100755 2642/CH3/EX3.5/Ex3_5.sce create mode 100755 2642/CH3/EX3.6/Ex3_6.sce create mode 100755 2642/CH3/EX3.7/Ex3_7.sce create mode 100755 2642/CH3/EX3.8/Ex3_8.sce create mode 100755 2642/CH3/EX3.9/Ex3_9.sce (limited to '2642/CH3') diff --git a/2642/CH3/EX3.1/Ex3_1.sce b/2642/CH3/EX3.1/Ex3_1.sce new file mode 100755 index 000000000..f0c310134 --- /dev/null +++ b/2642/CH3/EX3.1/Ex3_1.sce @@ -0,0 +1,26 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.1 +clc;clear; // clears the console and command history + +// Given data +V_1 = 2200 // primary voltage of transformer in V +V_2 = 220 // secondary voltage of transformer in V +N_2 = 56 // number of turns in the secondary coil of transformer +kVA = 25 // kVA rating of transformer + +// caclulations +a = V_1/V_2 // turn ratio +N_1 = a*N_2 // number of primary turns +I_1 = kVA*10^3/V_1 // primary full load current in A +I_2 = kVA*10^3/V_2 // secondary full load current in A + +// display the result +disp("Example 3.1 solution"); +printf(" \n Number of primary turns \n N_1 = %.0f \n", N_1); +printf(" \n Primary full load current \n I_2 = %.2f A \n", I_1); +printf(" \n Secondary full load current \n I_2 = %.1f A \n", I_2); diff --git a/2642/CH3/EX3.10/Ex3_10.sce b/2642/CH3/EX3.10/Ex3_10.sce new file mode 100755 index 000000000..2f3d2ebc6 --- /dev/null +++ b/2642/CH3/EX3.10/Ex3_10.sce @@ -0,0 +1,38 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.10 + + +clc;clear; // clears the console and command history + +// Given data +kVA = 12 // kVA ratingss of transformer +n = 0.97 // maximum efficiency at unity power factor +t_1 = 8 // time in hours +P_1 = 10 // load in kW +pf_1 = 0.8 // lagging power factor +t_2 = 10 // time in hours +P_2 = 15 // load in kW +pf_2 = 0.90 // leading power factor +t_3 = 6 // time in hours at no load +P_3 = 0 // load in kW + +// caclulations +P_01 = kVA*1 // o/p power at full load and unity factor in kW +P_in1 = (P_01/n) // i/p power at full load +P_tloss = P_in1-P_01 // total loss in kW +P_cu = P_tloss/2 // copper loss at 12 kVA P_cu=P_i in kW +P_024 = P_1*t_1+P_2*t_2+P_3*t_3 // all day o.p power in kWh +P_i24 = 24*P_cu // iron loss for 24 hours in kWh +P_cu24 = P_cu*t_1*((P_1/pf_1)/P_01)^2+P_cu*t_2*((P_2/pf_2)/P_01)^2 // copper loss for 24 hours +P_in24 = P_024+P_i24+P_cu24 // all day i/p power in kWh +n_allday = (P_024/P_in24)*100 // all day efficiency + +// display the result +disp("Example 3.10 solution"); +printf(" \n All day efficiency \n n_allday = %.0f percent \n", n_allday); + diff --git a/2642/CH3/EX3.11/Ex3_11.sce b/2642/CH3/EX3.11/Ex3_11.sce new file mode 100755 index 000000000..ea9938e0e --- /dev/null +++ b/2642/CH3/EX3.11/Ex3_11.sce @@ -0,0 +1,29 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.11 + + +clc;clear; // clears the console and command history + +// Given data +V_1 = 200 // voltage in V +f = 50 // frequency in Hz +I_0 = 0.6 // single phase current in A +P_0 = 80 // power in W + +// caclulations +cos_phi0 = P_0/(V_1*I_0) // power factor +sin_phi0 = 0.74 // from above expression +I_w = I_0*cos_phi0 // working component of no load current in A +I_m = I_0*sin_phi0 // working component of no load current in A +R_0 = V_1/I_w // no load circuit resistance in ohm +X_0 = V_1/I_m // no load circuit reactance in ohm + +// display the result +disp("Example 3.11 solution"); +printf(" \n No-load circuit resistance \n R_0 = %.2f ohm \n", R_0); +printf(" \n No-load circuit reactance \n X_0 = %.1f ohm \n", X_0); diff --git a/2642/CH3/EX3.12/Ex3_12.sce b/2642/CH3/EX3.12/Ex3_12.sce new file mode 100755 index 000000000..6d743ace0 --- /dev/null +++ b/2642/CH3/EX3.12/Ex3_12.sce @@ -0,0 +1,42 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.12 + + +clc;clear; // clears the console and command history + +// Given data +kVA = 25 // kVA ratings of transformer +V1 = 2200 // primary side voltage in V +V2 = 220 // secondary side voltage in V +V_1 = 40 // voltage at high voltage side in V +I_1 = 5 // current at high voltage side in A +P = 150 // power at high voltage side in W + +// caclulations +Z_01 = V_1/I_1 // reactance to primary sidec in ohm +R_01 = P/I_1^2 // resistance to primary side in ohm +phi = acosd(R_01/Z_01) // power factor angle +X_01 = Z_01*sind(phi) // impedance to primary side in ohm +a = V1/V2 // turn ratio +Z_02 = Z_01/a^2 // reactance to secondary side in ohm +R_02 = R_01/a^2 // resistance to secondary side in ohm +X_02 = X_01/a^2 // impedance to secondary side in ohm +I_2 = kVA*10^3/V2 // secondary side current in A +E_2 = V2+I_2*Z_02 // secondary induced voltage in V +VR = ((E_2-V2)/V2)*100 // voltage regulation + +// display the result +disp("Example 3.12 solution"); +printf(" \n Resistance to primary side \n Z_01 = %.2f ohm \n", Z_01); +printf(" \n Resistance to primary side \n R_01 = %.1f ohm \n", R_01); +printf(" \n Impedance to primary side \n X_01 = %.2f ohm \n", X_01); +printf(" \n Reactance to secondary side \n Z_02 = %.2f ohm \n", Z_02); +printf(" \n Resistance to secondary side \n R_02 = %.2f ohm \n", R_02); +printf(" \n Impedance to secondary side \n X_02 = %.3f ohm \n", X_02); +printf(" \n oltage regulation \n VR = %.0f percent \n", VR); + diff --git a/2642/CH3/EX3.13/Ex3_13.sce b/2642/CH3/EX3.13/Ex3_13.sce new file mode 100755 index 000000000..3ce3efd85 --- /dev/null +++ b/2642/CH3/EX3.13/Ex3_13.sce @@ -0,0 +1,29 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.13 + +clc;clear; // clears the console and command history + +// Given data +kVA = 120 // kVA ratings of autotransformer +V1 = 2200 // lower part voltage of autotransformer in V +V2 = 220 // upper part voltage of autotransformer in V + +// caclulations +I_pq = kVA*10^3/V2 // currents of respective windings +I_qr = kVA*10^3/V1 // currents of respective windings +I_1 = I_pq+I_qr // current in primary side in A +V_2 = V1+V2 // voltage across the secondary side in V +kVA_1 = I_1*V1/1000 // kVA ratings of autotrnsformer +kVA_2 = I_pq*V_2/1000 // kVA ratings of autotrnsformer + + +// display the result +disp("Example 3.13 solution"); +printf(" \n kVA ratings of autotrnsformer \n kVA_1 = %.0f kVA \n", kVA_1); +printf(" \n kVA ratings of autotrnsformer \n kVA_2 = %.0f kVA \n", kVA_2); + diff --git a/2642/CH3/EX3.14/Ex3_14.sce b/2642/CH3/EX3.14/Ex3_14.sce new file mode 100755 index 000000000..b585a9279 --- /dev/null +++ b/2642/CH3/EX3.14/Ex3_14.sce @@ -0,0 +1,28 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.14 + +clc;clear; // clears the console and command history + +// Given data +E_1 = 500 // secondary induced voltages in V +E_2 = 450 // secondary induced voltages in V +kVA_1 = 100 // kVA ratings of transformer +kVA_2 = 200 // kVA ratings of transformer +Z_1 = 0.05 // impedance of transformer +Z_2 = 0.08 // impedance of transformer + +// caclulations +Z1 =Z_1*E_1/(kVA_1*10^3/E_1) // actual impedance of 1st transformer in ohm +Z2 = Z_2*E_2/(kVA_1*10^3/E_2) // actual impedance of 2nd transformer in ohm +Z = %i*(Z1+Z2) +I_c = (E_1-E_2)/(Z) // value of the circulating current + +// display the result +disp("Example 3.14 solution"); +printf(" \n Value of the circulating current \n I_c = %.3f<%.f A \n", abs(I_c),atand(imag(I_c),real(I_c))); + diff --git a/2642/CH3/EX3.15/Ex3_15.sce b/2642/CH3/EX3.15/Ex3_15.sce new file mode 100755 index 000000000..5f9a94737 --- /dev/null +++ b/2642/CH3/EX3.15/Ex3_15.sce @@ -0,0 +1,36 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.15 + +clc;clear; // clears the console and command history + +// Given data +V_L1 = 11 // three-phase transformer supply in kV +I_P1 = 6 // three-phase transformer current in A +a = 11 // turns ratio + +// caclulations +// delta-wye +V_dP2 = V_L1*10^3/a // phase voltage at secondary side in V +V_dL2 = sqrt(3)*V_dP2 // line voltage at secondary side in V +I_dP1 = a/sqrt(3) // phase current in the primary in A +I_dL2 = a*I_dP1 // line current in secondary in A +//Wye delta connection +V_wP1 = V_L1*10^3/sqrt(3) // phase voltage at primary in V +V_wP2 = V_wP1/a // phase voltage at secondary in V, V_L2=V_P2 +I_wP2 = a*I_P1 // phase current in secondary in A +I_wL2 = sqrt(3)*I_wP2 // line current in secondary in A + +// display the result +disp("Example 3.15 solution"); +printf(" \n For delta-wye connection-"); +printf(" \n Phase voltage at secondary side \n V_dL2 = %.f V \n", V_dL2); +printf(" \n Line voltage at secondary side \n I_dL2 = %.2f A \n", I_dL2); +printf(" \n For wye-delta connection-") +printf(" \n Phase voltage at secondary side \n V_wL2 = %.2f V \n", V_wP2); +printf(" \n Line current in secondary side \n I_wL2 = %.2f A \n", I_wL2); + diff --git a/2642/CH3/EX3.16/Ex3_16.sce b/2642/CH3/EX3.16/Ex3_16.sce new file mode 100755 index 000000000..9ab6e7a35 --- /dev/null +++ b/2642/CH3/EX3.16/Ex3_16.sce @@ -0,0 +1,33 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.16 + + +clc;clear; // clears the console and command history + +// Given data +V_b = 220 // voltage in V +f = 50 // frequency in Hz +S_b = 600 // power ratings +R = 3 // resistance in ohm +X_L = 5 // inducatnce in ohm +Z = R+X_L // impedance + +// caclulations +I_b = S_b/V_b // base value of current in A +Z_b = V_b^2/S_b // base value of impedance in ohm +R_pu = R/Z_b // per unit value of resistance in ohm +X_Lpu = X_L/Z_b // per unit value of impedance in ohm +Z_pu = abs(Z)/Z_b // per unit of value of impedance in ohm +Z_pu = R_pu+%i*X_Lpu // per unit of value of impedance in ohm NOTE:alternative method + +// display the result +disp("Example 3.16 solution"); +printf(" \n Per unit value of resistance \n R_pu = %.3f ohm \n", R_pu); +printf(" \n Per unit value of impedance \n X_Lpu = %.3f ohm \n", X_Lpu); +printf(" \n Per unit of value of impedance \n Z_pu = %.3f<%.f \n", abs(Z_pu),atand(imag(Z_pu),real(Z_pu))); + diff --git a/2642/CH3/EX3.17/Ex3_17.sce b/2642/CH3/EX3.17/Ex3_17.sce new file mode 100755 index 000000000..e963b79f3 --- /dev/null +++ b/2642/CH3/EX3.17/Ex3_17.sce @@ -0,0 +1,45 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.17 + + +clc;clear; // clears the console and command history + +// Given data +S_b1 = 100 // base apparent power +V_bT11 = 220 // voltage of 1st transformer in kV +V_bT12 = 132 // voltage of 1st transformer in kV +X_T1 = 0.02 // impedance of 1st transformer in pu +S_b2 = 50 // base apparent power +V_bT21 = 132 // voltage of 2nd transformer in kV +V_bT22 = 66 // voltage of 2nd transformer in kV +X_T2 = 0.05 // impedance of 2nd transformer in pu +X_L = 4 // line impedance in ohm +P = 50 // power absorded in MW +pf = 0.6 // lagging power factor from transmission line +Z_p = 0.32*%i //Reactance of transformer in ohm + +// caclulations +S_b = S_b1 //Base power(MW) +V_b = V_bT11 //Base voltage(kV) +a = V_bT11/V_bT12 // turn ratio for 1st transformer +Vb_line = (V_bT11/a) // base voltage of line in kV +Zb_line = Vb_line^2/S_b1 // base impedance of line in ohm +Xpu_line = X_L/Zb_line // per unit reactance of line +Xpu_T1 = X_T1*(V_bT11/V_b)^2*(S_b/S_b1) // 1st grid transformer ,the per unit reactance +Vb_load = (V_bT12/(V_bT12/V_bT22)) // load side base voltage in kV +Xpu_load = X_T2*(V_bT22/Vb_load)^2*(S_b/S_b2) // second load transformer ,the per unit reactance +I_b = S_b*1000/(sqrt(3)*Vb_load) // base current +I_L = S_b2*1000/(sqrt(3)*V_bT22*pf) // actualcurrent in load in A +I_Lpu = I_L/I_b // per unit value of the load +V_L = V_bT22/V_bT22 //per unit value of the voltage at the load terminal(bus4) +V_gb = I_Lpu*exp(%i*acos(pf))*Z_p + 1 // per unit value of bus voltage +V_gba = abs(V_gb)*V_bT11 // actual value of grid to bus voltage + +// display the result +disp("Example 3.17 solution"); +printf(" \n Actual value of grid to bus voltage \n V_gba = %.2f kV \n", V_gba); diff --git a/2642/CH3/EX3.2/Ex3_2.sce b/2642/CH3/EX3.2/Ex3_2.sce new file mode 100755 index 000000000..30cd6af41 --- /dev/null +++ b/2642/CH3/EX3.2/Ex3_2.sce @@ -0,0 +1,22 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.2 +clc;clear; // clears the console and command history + +// Given data +V_1 = 220 // voltage in V +N_1 = 150 // number of turns in the primary coil of transformer +N_2 = 300 // number of turns in the secondary coil of transformer +f = 50 // frequency in Hz + +// caclulations +a = N_1/N_2 // turn ratio +phi_m = V_1/(4.44*f*N_1) // mutual flux in Wb + +// display the result +disp("Example 3.2 solution"); +printf(" \n Mutual flux \n phi_m = %.2e Wb \n", phi_m); diff --git a/2642/CH3/EX3.3/Ex3_3.sce b/2642/CH3/EX3.3/Ex3_3.sce new file mode 100755 index 000000000..7f8988bd5 --- /dev/null +++ b/2642/CH3/EX3.3/Ex3_3.sce @@ -0,0 +1,27 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.3 +clc;clear; // clears the console and command history + +// Given data +V_1 = 2200 // primary voltage of transformer in V +V_2 = 220 // secondary voltage of transformer in V +I_0 = 0.5 // no-load current in A +P_0 = 350 // absorbed power by transformer + +// caclulations +phi = acos(.32) +sin_phi = sin(phi) +cos_phi = P_0/(V_1*I_0) // no-load power factor +I_w = I_0*cos_phi // iron loss component of current A +I_m = I_0*sin_phi // magnetizing component of current A + + +// display the result +disp("Example 3.3 solution"); +printf(" \n The iron loss component of current A \n I_w = %.2f A \n", I_w); +printf(" \n The magnetizing component of current A \n I_m = %.2f A \n", I_m); diff --git a/2642/CH3/EX3.4/Ex3_4.sce b/2642/CH3/EX3.4/Ex3_4.sce new file mode 100755 index 000000000..295de1627 --- /dev/null +++ b/2642/CH3/EX3.4/Ex3_4.sce @@ -0,0 +1,26 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.4 +clc;clear; // clears the console and command history + +// Given data +N_1 = 450 // number of turns in the primary coil of transformer +N_2 = 45 // number of turns in the secondary coil of transformer +Z_L = 3 // load impedance in Ω +V_1 = 15 // primary coil voltage of transformer in V + +// caclulations +a = N_1/N_2 // turn ratio +Z_1 = a^2*Z_L // load impedance referred to primary ohm +I_1 = V_1/Z_1 // primary current in A + + +// display the result +disp("Example 3.4 solution"); +printf(" \n Turn ratio \n a = %.0f \n", a); +printf(" \n Load impedance referred to primary \n Z_1 = %.0f Ω \n", Z_1); +printf(" \n Primary current \n I_1 = %.2f A \n", I_1); diff --git a/2642/CH3/EX3.5/Ex3_5.sce b/2642/CH3/EX3.5/Ex3_5.sce new file mode 100755 index 000000000..a88344b6e --- /dev/null +++ b/2642/CH3/EX3.5/Ex3_5.sce @@ -0,0 +1,28 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.5 +clc;clear; // clears the console and command history + +// Given data +V_1 = 400 // primary voltage of transformer in V +V_2 = 100 // secondary voltage of transformer in V +I_0 = 0.4 // no-load current in A +I_2 = 100 // load draws current in A +cos_phi0 = 0.3 // power factor lagging from the supply +cos_phi2 = 0.6 // power factor lagging from the secondary + +// caclulations +phi0 = acosd(0.3) +phi2 = acosd(0.6) +phi1 = phi0-phi2 +a = V_1/V_2 // turn ratio +I_2! = I_2/a // secondary current equivalent to the primary +I_1 = sqrt((I_2!^2)+(I_0^2)+(2*I_2!*I_0*cosd(19.4))) // primary current in A + +// display the result +disp("Example 3.5 solution"); +printf(" \n Primary current \n I_1 = %.2f A \n", I_1); diff --git a/2642/CH3/EX3.6/Ex3_6.sce b/2642/CH3/EX3.6/Ex3_6.sce new file mode 100755 index 000000000..63857c585 --- /dev/null +++ b/2642/CH3/EX3.6/Ex3_6.sce @@ -0,0 +1,31 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.6 +clc;clear; // clears the console and command history + +// Given data +V_1 = 2000 // primary voltage of transformer in V +V_2 = 400 // secondary voltage of transformer in V +kVA = 200 // kVA rating of transformer +R_1 = 3 // primary resistance in Ω +X_1 = 12 // primary reactance in Ω +R_2 = 0.3 // secondary resistance in Ω +X_2 = 0.1 // secondary reactance in Ω + +// caclulations +a = V_1/V_2 // turn ratio +R_01 = R_1+(a^2*R_2) // total resistance referred to primary side Ω +X_01 = X_1+(a^2*X_2) // total reactance referred to primary side Ω +Z_01 = sqrt((R_01^2)+(X_01^2)) // equivalent impedance reffered to primary side in Ω +R_02 = R_2+(R_1/a^2) // total resistance referred to secondary side Ω +X_02 = X_2+(X_1/a^2) // total reactance referred to secondary side Ω +Z_02 = sqrt((R_02^2)+(X_02^2)) // equivalent impedance reffered to secondary side in Ω + +// display the result +disp("Example 3.6 solution"); +printf(" \n Equivalent impedance reffered to primary side \n Z_01 = %.1f Ω \n", Z_01); +printf(" \n Equivalent impedance reffered to secondary side \n Z_02 = %.2f Ω \n", Z_02); diff --git a/2642/CH3/EX3.7/Ex3_7.sce b/2642/CH3/EX3.7/Ex3_7.sce new file mode 100755 index 000000000..876496b4f --- /dev/null +++ b/2642/CH3/EX3.7/Ex3_7.sce @@ -0,0 +1,33 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.7 +clc;clear; // clears the console and command history + +// Given data +V_1 = 200 // primary voltage of transformer in V +V_2 = 400 // secondary voltage of transformer in V +R_1 = 0.3 // primary resistance in Ω +X_1 = 0.6 // primary reactance in Ω +R_2 = 0.8 // secondary resistance in Ω +X_2 = 1.6 // secondary reactance in Ω +I_2 = 10 // secondary supply current in A +cos_phi2 = 0.8 // power factor lagging + +// caclulations +a = V_1/V_2 // turn ratio +phi2 = acosd(0.8) +sin_phi2 = sind(phi2) +R_02 = R_2+(R_1/a^2) // total resistance referred to secondary side Ω +X_02 = X_2+(X_1/a^2) // total reactance referred to secondary side Ω +E_2 = (V_2*cos_phi2+I_2*R_02)+(%i*(V_2*sin_phi2+I_2*X_02)) // no-load voltage +V_r = (abs(E_2)-V_2)/V_2*100 // voltage regulation + +// display the result +disp("Example 3.7 solution"); +printf(" \n Voltage regulation \n V_r = %.0f percent \n", V_r); + + diff --git a/2642/CH3/EX3.8/Ex3_8.sce b/2642/CH3/EX3.8/Ex3_8.sce new file mode 100755 index 000000000..eca25ca92 --- /dev/null +++ b/2642/CH3/EX3.8/Ex3_8.sce @@ -0,0 +1,30 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.8 +clc;clear; // clears the console and command history + +// Given data +P_i = 1 // iron loss of transformer in kW +P_cu = 2 // copper loss of transformer in kW +kVA = 200 // kVA ratingss of transformer +pf = 0.95 // power factor + +// caclulations +P_cu1 = (3/4)^2*P_cu // copper loss at 1/2th of full load in kW +P_cu2 = (1/2)^2*P_cu // copper loss at 1/2th of full load in kW +P_01 = (3/4)*kVA*P_i // o/p power at 3/4 full load and unity power factor in kW +P_in1 = P_01+P_i+P_cu1 // i/p power at 3/4 full load and unity power factor in kW +n_1 = (P_01/P_in1)*100 // efficiency at 3/4 full load and unity power factor +P_02 = (1/2)*kVA*pf // o/p power factor at1/2 full load and 0.95 power factor in kW +P_in2 = P_02+P_i+P_cu2 // i/p power at 1/2 full load and 0.95 power factor in kW +n_2 = (P_02/P_in2)*100 // efficiency at 1/2 full load and 0.95 power factor + +// display the result +disp("Example 3.8 solution"); +printf(" \n Efficiency at 3/4 full load and unity power factor \n n_1 = %.2f percent \n", n_1); +printf(" \n Efficiency at 1/2 full load and 0.95 power factor \n n_2 = %.2f percent \n", n_2); + diff --git a/2642/CH3/EX3.9/Ex3_9.sce b/2642/CH3/EX3.9/Ex3_9.sce new file mode 100755 index 000000000..5b1b69703 --- /dev/null +++ b/2642/CH3/EX3.9/Ex3_9.sce @@ -0,0 +1,34 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 3 : TRANSFORMER AND PER UNIT SYSTEM +// Example : 3.9 + + +clc;clear; // clears the console and command history + +// Given data +P_i = 350 // iron loss of transformer in W +P_cu = 650 // copper loss of transformer in W +kVA = 30 // kVA ratingss of transformer +pf = 0.6 // power factor + +// caclulations +P_tloss = (P_i+P_cu)*10^-3 // total full load loss in kW +P_out = kVA*pf // o/p power at full load in kW +P_in = P_out+P_tloss // i/p power at full load +n_1 = (P_out/P_in)*100 // efficiency at full load +kVA_out = kVA*sqrt(P_i/P_cu) // o/p kVA corresponding to maximum efficiency +P_01 = kVA_out*pf // o/p power in W +P_tloss1 = 2*P_i // maximum efficiency iron loss=copper loss in W +P_in1 = P_01+P_tloss1*10^-3 // i/p power in kW +n_2 = (P_01/P_in1)*100 // efficiency + +// display the result +disp("Example 3.9 solution"); +printf(" \n Efficiency at full load \n n_1 = %.2f percent \n", n_1); +printf(" \n Out put power \n P_01 = %.1f kW \n", P_01); +printf(" \n Efficiency \n n_2 = %.2f percent \n", n_2); + -- cgit