From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2642/CH10/EX10.3/Ex10_3.sce | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) create mode 100755 2642/CH10/EX10.3/Ex10_3.sce (limited to '2642/CH10/EX10.3') diff --git a/2642/CH10/EX10.3/Ex10_3.sce b/2642/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..5af584787 --- /dev/null +++ b/2642/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,32 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES +// M.A.SALAM +// NAROSA PUBLISHING HOUSE +// SECOND EDITION + +// Chapter 10 : SYNCHRONOUS MOTOR +// Example : 10.3 + +clc;clear; // clears the console and command history + +// Given data +V = 440 // supply voltage in V +R_a = 1.5 // per phase resistance in ohm +X_a = 8 // syncronous reactance in ohm +P = 4 // number of poles +f = 50 // supply frequency in Hz +pf = 0.9 // leading power factor +I_a = 50 // armature current in A + +// caclulations +V_t = V/sqrt(3) // terminal voltage per phase in V +phi = acosd(pf) // angle in degree +Z_s = R_a+%i*X_a // impedance per phase ohm +E_r = I_a*abs(Z_s) // resultant voltage due to impedance in V +bet = atand(X_a/R_a) +E_f = sqrt(V_t^2+E_r^2-2*V_t*E_r*cosd(bet+phi)) // excitation voltage per phase in V +P_dm = (((E_f*V_t)/Z_s)-((E_f^2*R_a)/Z_s^2)) // maximum power per phase in W + +// display the result +disp("Example 10.3 solution"); +printf(" \n Maximum power per phase \n P_dm = %.2f W \n", P_dm ); +printf(" \n In textbook solution they took E_f = 513.5V instead of 533.33V"); -- cgit