From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2507/CH5/EX5.1/Ex5_1.sce | 29 +++++++++++++++++++++++++++++ 2507/CH5/EX5.10/Ex5_10.sce | 18 ++++++++++++++++++ 2507/CH5/EX5.11/Ex5_11.sce | 5 +++++ 2507/CH5/EX5.2/Ex5_2.sce | 31 +++++++++++++++++++++++++++++++ 2507/CH5/EX5.3/Ex5_3.sce | 33 +++++++++++++++++++++++++++++++++ 2507/CH5/EX5.4/Ex5_4.sce | 24 ++++++++++++++++++++++++ 2507/CH5/EX5.5/Ex5_5.sce | 16 ++++++++++++++++ 2507/CH5/EX5.6/Ex5_6.sce | 16 ++++++++++++++++ 2507/CH5/EX5.7/Ex5_7.sce | 13 +++++++++++++ 2507/CH5/EX5.8/Ex5_8.sce | 14 ++++++++++++++ 2507/CH5/EX5.9/Ex5_9.sce | 10 ++++++++++ 11 files changed, 209 insertions(+) create mode 100755 2507/CH5/EX5.1/Ex5_1.sce create mode 100755 2507/CH5/EX5.10/Ex5_10.sce create mode 100755 2507/CH5/EX5.11/Ex5_11.sce create mode 100755 2507/CH5/EX5.2/Ex5_2.sce create mode 100755 2507/CH5/EX5.3/Ex5_3.sce create mode 100755 2507/CH5/EX5.4/Ex5_4.sce create mode 100755 2507/CH5/EX5.5/Ex5_5.sce create mode 100755 2507/CH5/EX5.6/Ex5_6.sce create mode 100755 2507/CH5/EX5.7/Ex5_7.sce create mode 100755 2507/CH5/EX5.8/Ex5_8.sce create mode 100755 2507/CH5/EX5.9/Ex5_9.sce (limited to '2507/CH5') diff --git a/2507/CH5/EX5.1/Ex5_1.sce b/2507/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..40ab5be03 --- /dev/null +++ b/2507/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,29 @@ +clc +clear +printf("Example 5.1 | Page number 119 \n\n"); +//Find the work output in KJ/kg +//Given data +Q = -24; //KJ/kg + +p1 = 5e5; //N/m^2 +t1 = 227; //°C +V1 = 50; //m/s +v1 = 0.78; //m^3/kg + +p2 = 1e5; //N/m^2 +t2 = 57; //°C +V2 = 100; //m/s +v2 = 0.97; //m^3/kg + +g = 9.81; //m/s^2 //acceleration due to gravity + +delta_z = -5; //m +Cv = 0.7; //KJ/kg +delta_u = Cv*(t2 - t1); //KJ/kg //change in internal energy //u2-u1 + +//Solution +delta_h = delta_u + (p2*v2 - p1*v1)*.001; //KJ/kg //change in enthalpy //h2-h1 + +W_x = Q - (delta_h + (V2^2 - V1^2)/2*.001 + g*delta_z*.001); //kJ/kg //Work Output + +printf("Work output = %.2f KJ/kg",W_x); diff --git a/2507/CH5/EX5.10/Ex5_10.sce b/2507/CH5/EX5.10/Ex5_10.sce new file mode 100755 index 000000000..56801bd96 --- /dev/null +++ b/2507/CH5/EX5.10/Ex5_10.sce @@ -0,0 +1,18 @@ +clc +clear +printf("Example 5.10 | Page number 131 \n\n"); +//Find the mass of air entering and temperature of air in vessel + +//Given Data +m1 = 0.8 //kg //initial mass of air +p1 = 150 //kPa //initial pressure of air +T1 = 300 //K //initial temperature of air +p_p = 600 //kPa //pressure of air in pipe +T_p = 330 //K // temperature of air in pipe + +//Solution +m2T2 = (p_p/p1)*T1*m1 +m2 = ((0.718*(m2T2/m1-T1))/(331.65)*m1)+m1 //kg //final mass of air +printf("Mass of air entering in vessel = %.4f kg\n",m2-m1) +T2 = m2T2/m2 //K //Temperature of air in vessel +printf("Temperature of air in vessel = %.1f K",T2) diff --git a/2507/CH5/EX5.11/Ex5_11.sce b/2507/CH5/EX5.11/Ex5_11.sce new file mode 100755 index 000000000..88a01e5f6 --- /dev/null +++ b/2507/CH5/EX5.11/Ex5_11.sce @@ -0,0 +1,5 @@ +clc +clear +printf("Example 5.11 | Page number 133 \n\n"); +//This is a theoritical question. Refer textbook for solution. +printf("This is a theoritical question. Refer textbook for solution.") diff --git a/2507/CH5/EX5.2/Ex5_2.sce b/2507/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..0afc9a1f8 --- /dev/null +++ b/2507/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,31 @@ +clc +clear +printf("Example 5.2 | Page number 120 \n\n"); +//Part (a) Find the change in enthalpy across turbine, if inlet velocity is negligible +//Part (b) Find the change in enthalpy across turbine, if inlet velocity is 60m/s + +//Given Data +m = 5000/3600 // kg/s // flow rate +W_x = 550 // KJ/s //power developed by turbine +Q = 0 //Heat loss is negligible + +//Solution +//Part (a) +printf("Part(a)\n\n") +V1 = 0 // m/s //inlet velocity +V2 = 360 // m/s //exit velocity +g = 9.81 // m/s^2 +delta_z = 0 //m //z2-z1 + +delta_h = ((Q-W_x)/m)-g*delta_z*.001-((V2^2-V1^2)/2000) //KJ/Kg //change in enthalpy +printf("Change in enthalpy = %.2f KJ/kg\n",delta_h) + +//Part (a) +printf("\nPart(b)\n\n") +V1 = 60 // m/s //inlet velocity +V2 = 360 // m/s //exit velocity +g = 9.81 // m/s^2 +delta_z = 0 //m //z2-z1 + +delta_h = ((Q-W_x)/m)-g*delta_z*.001-((V2^2-V1^2)/2000) //KJ/Kg //change in enthalpy +printf("Change in enthalpy = %.2f KJ/kg\n",delta_h) diff --git a/2507/CH5/EX5.3/Ex5_3.sce b/2507/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..7dd360ecb --- /dev/null +++ b/2507/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,33 @@ +clc +clear +printf("Example 5.3 | Page number 122 \n\n"); +//Part(a) Determine the temperature of air at inlet to the turbine +//PArt(b) Determine power developed by turbine + +//Given Data +mA = 0.8 // kg/s //flow rate of stream A +pA = 15e5 // N/m^2 //Pressure of stream A +tA = 250 //°C //temperature of stream A + + +mB = 0.5 // kg/s //flow rate of stream B +pB = 15e5 // N/m^2 //Pressure of stream B +tB = 200 //°C //temperature of stream B + +Q = 0 //No heat loss + +p1 = 10e5 // N/m^2 //pressure supply of chamber +t2 = 30 //°C //exhaust air temperature from turbine + +Cv = 0.718 // KJ/kgK //heat capacity at constant volume +Cp = 1 // KJ/kgK //heat capacity at constant pressure + +//solution +//Part(a) +printf("Part (a)\n") +t1 = ((mA*Cp*tA)+(mB*Cp*tB))/((mA*Cp)+(mB*Cp)) // °C //the temperature of air at inlet to the turbine +printf("The temperature of air at inlet to the turbine = %.2f °C\n",t1); +//Part(b) +printf("\nPart (b)\n") +WT = -1*(mA+mB)*Cp*(t2-t1) // °kW //power developed by turbine +printf("Power developed by turbine = %.2f kW",WT); diff --git a/2507/CH5/EX5.4/Ex5_4.sce b/2507/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..58d505d56 --- /dev/null +++ b/2507/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,24 @@ +clc +clear +printf("Example 5.4 | Page number 123 \n\n"); +//Find inlet and exit velocities + +//Given Data +d1 = 0.15 //m //inlet diameter +m = 4000/3600 // kg/s //flow rate +v1 = 0.285 //m^3/kg //specific volume at entry +d2 = 0.25 //m //exit diameter +v2 = 15 // m^3/kg //specific volume at exit + +//Solution + +A1 = %pi*d1^2/4 //m^2 //inlet cross sectional area +A2 = %pi*d2^2/4 // m^2 // exit cross sectional area +printf("Inlet cross sectional area (A1)= %.5f m^2\n",A1); +printf("Exit cross sectional area (A2)= %.5f m^2\n",A2); + +V1 = m*v1/A1 //m/s //inlet velocity +V2 = m*v2/A2 //m/s //exit velocity + +printf("\nInlet velocity = %.1f m/s",V1); +printf("\nExit velocity = %.1f m/s",V2); diff --git a/2507/CH5/EX5.5/Ex5_5.sce b/2507/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..06f910160 --- /dev/null +++ b/2507/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,16 @@ +clc +clear +printf("Example 5.5 | Page number 125 \n\n"); +//Find air temperature after throttling + +//Given Data +p1 = 10//bar //inlet pressure +t1 = 300 //°C //inlet temperature + +p2 = 0.1 //bar //exit pressure +Cp = 1 //kJ/kgK // heat capacity at constant pressure +//Solution +//Adiabatic process +delta_h = 0 //change in enthalpy +t2 = delta_h/Cp + t1 +printf("Temperature of air after throttling = %.1f °C",t1) diff --git a/2507/CH5/EX5.6/Ex5_6.sce b/2507/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..a8f7e7820 --- /dev/null +++ b/2507/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,16 @@ +clc +clear +printf("Example 5.6 | Page number 126 \n\n"); +// Calculate work input to compressor + +//Given Data +p1 = 1e5 // N/m^2 //inlet pressure +v1 = 0.08 //m^3/kg // specific volume at inlet +p2 = 7e5 // N/m^2 //exit pressure +v2 = 0.016 // m^3/kg //specific volume at exit +u1 = 48 // kJ/kg // internal energy at inlet +u2 = 200 // kJ/kg // internal energy at exit +Q = -120 // kJ/kg // heat loss +//Solution +Wc = ((u2 - u1) + (p2*v2 - p1*v1)*.001 - Q)*-1 // kJ/kg // work input to compressor +printf("Work input to compressor (Wc) = %.1f kJ/kg",Wc) diff --git a/2507/CH5/EX5.7/Ex5_7.sce b/2507/CH5/EX5.7/Ex5_7.sce new file mode 100755 index 000000000..ee2e20e3f --- /dev/null +++ b/2507/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,13 @@ +clc +clear +printf("Example 5.7 | Page number 128 \n\n"); +//Find mass flow rate of cooling water +mh = 9.45 // kg/s // flow rate of steam +h_h2 = 140 // kJ/kg // enthalpy of condensate +h_h1 = 2570 // kJ/kg // inlet enthalpy of steam +t1 = 25 // °C //inlet temperature of cooling water +t2 = 36 // °C //exit temperature of cooling water +c = 4.189 // kJ/kg deg // specific heat of water +//Solution +mc = -1*(mh*(h_h2-h_h1))/(c*(t2-t1)) // kg/s //mass flow rate of cooling water +printf("Mass flow rate of cooling water = %.2f kg/s",mc) diff --git a/2507/CH5/EX5.8/Ex5_8.sce b/2507/CH5/EX5.8/Ex5_8.sce new file mode 100755 index 000000000..dd8510634 --- /dev/null +++ b/2507/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,14 @@ +clc +clear +printf("Example 5.8 | Page number 129 \n\n"); +//Redo example 5.7 for heat loss 10% of heat transferred +mh = 9.45 // kg/s // flow rate of steam +h_h2 = 140 // kJ/kg // enthalpy of condensate +h_h1 = 2570 // kJ/kg // inlet enthalpy of steam +t1 = 25 // °C //inlet temperature of cooling water +t2 = 36 // °C //exit temperature of cooling water +c = 4.189 // kJ/kg deg // specific heat of water +fractionalheatloss = 0.1 // fractional heat loss +//Solution +mc = -1*((1-fractionalheatloss)*mh*(h_h2-h_h1))/(c*(t2-t1)) // kg/s //mass flow rate of cooling water +printf("Mass flow rate of cooling water = %.1f kg/s",mc) diff --git a/2507/CH5/EX5.9/Ex5_9.sce b/2507/CH5/EX5.9/Ex5_9.sce new file mode 100755 index 000000000..fe56e70e1 --- /dev/null +++ b/2507/CH5/EX5.9/Ex5_9.sce @@ -0,0 +1,10 @@ +clc +clear +printf("Example 5.9 | Page number 130 \n\n"); +//Find inlet air temperature +V1 = 300 //m/s //inlet air velocity +t2 = 100 //°C //exit air temperature +V2 = 15 //m/s //exit air velocity +//Solution +t1 = t2 + .001*(V2^2 - V1^2)/2 // °C //inlet air temperature +printf("Inlet air temperature = %.1f °C",t1) -- cgit