From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2417/CH6/EX6.39/Ex6_39.sce | 46 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) create mode 100755 2417/CH6/EX6.39/Ex6_39.sce (limited to '2417/CH6/EX6.39') diff --git a/2417/CH6/EX6.39/Ex6_39.sce b/2417/CH6/EX6.39/Ex6_39.sce new file mode 100755 index 000000000..bd3081df7 --- /dev/null +++ b/2417/CH6/EX6.39/Ex6_39.sce @@ -0,0 +1,46 @@ +clear; +clc; +printf("\t\t\tProblem Number 6.39\n\n\n"); +// Chapter 6: The Ideal Gas +// Problem 6.39 (page no. 297) +// Solution + +k=1.4; //the specific heats ratio //k=cp/cv +M=1; //(table 6.5) //The Mach number=the local velocity/velocity of sound +T0=800; //absolute temperature //unit:R +gc=32.17; //Unit:(LBm*ft)/(LBf*s^2) //gc is constant of proportionality +R=53.35; //gas constant //ft*lbf/lbm*R +p0=300; //psia //pressure + +// * or "star" subscripts to conditions in which M=1; +// "0" subscript refers to isentropic stagnation +//Refer to figure 6.26, +//Tstar/T0=0.8333 +Tstar=T0*0.8333; //temperature when M=1 //unit:R +printf("If the mach number at the outlet is unity,temperature is %f R\n",Tstar); +Vat=sqrt(gc*R*Tstar*k); //ft/s //Vat=V2 //local velocity of sound +printf("If the mach number at the outlet is unity,velocity is %f ft/s\n\n",Vat) + +//For A/Astar=2.035 +//The table yields +M1=0.3; //mach number at inlet +printf("At inlet,The mach number is %f\n",M1) +//pstar/p0=0.52828 +pstar=p0*0.52828; //pressure when M=1 //psia +//also, +//T1/T0=0.98232 and p1/p0=0.93947 +//Therefore, +T1=T0*0.982332; //unit:R //T1=temperature at inlet +printf("At inlet,The temperature is %f R\n",T1); +p1=p0*0.93947; //psia //p1=pressure at inlet +printf("At inlet,The pressure is %f psia\n",p1); +//From the inlet conditions derived, +Va1=sqrt(gc*k*R*T1); //ft/s //V1=velocity at inlet +V1=M1*Va1; //ft/s //velocity +printf("At inlet,The velocity is %f ft/s\n",V1); +//The specific volume at inlet is found from the equation of state for an ideal gas: +v=(R*T1)/(p1*144); //ft^3/lbm //1 ft^2=144 in^2(for conversion of unit) //specific volume +rho=inv(v); //inverse of specific volume //density +A=2.035; //area //ft^2 +m=rho*A*V1; //mass flow //unit:lbm/s +printf("At inlet,The mass flow is %f lbm/s\n",m); -- cgit