From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2417/CH11/EX11.12/Ex11_12.sce | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) create mode 100755 2417/CH11/EX11.12/Ex11_12.sce (limited to '2417/CH11/EX11.12/Ex11_12.sce') diff --git a/2417/CH11/EX11.12/Ex11_12.sce b/2417/CH11/EX11.12/Ex11_12.sce new file mode 100755 index 000000000..ebe3a6e28 --- /dev/null +++ b/2417/CH11/EX11.12/Ex11_12.sce @@ -0,0 +1,30 @@ +//scilab 5.4.1 +clear; +clc; +printf("\t\t\tProblem Number 11.12\n\n\n"); +// Chapter 11 : Heat Transfer +// Problem 11.12 (page no. 569) +// Solution + +//From problem 11.9, +//The bare pipe +r2=3.50; //Outside diameter //Unit:in. +r1=3.00; //inside diameter //Unit:in. +Ti=240; //Inside temperature //unit:fahrenheit +L=5; //Length //Unit:ft +k=26; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity +Rpipe=log(r2/r1)/(2*%pi*k*L); //the resistance of pipe //Unit:(hr*F)/Btu +printf("The resistance of pipe is %f (hr*F)/Btu\n",Rpipe); + +//Now,in problem 11.12, +To=70; //Outside temperature //unit:fahrenheit +deltaT=Ti-To; //Change in temperature //unit:fahrenheit +h=0.9; //Coefficient of heat transfer //Unit:Btu/(hr*ft^2*F) +A=(%pi*r2)/12*L; //Area //Unit:ft^2 //1 inch = 1/12 feet //unit:ft^2 +Rconvection=inv(h*A); //The resistance due to natural convection to the surrounding air //Unit:(hr*F)/Btu +printf("The resistance due to natural convection to the surrounding air is %f (hr*F)/Btu\n",Rconvection); + +Rtotal=Rpipe+Rconvection; //The total resistance //unit:(hr*F)/Btu +printf("The total resistance is %f (hr*F)/Btu\n\n",Rtotal); +Q=deltaT/Rtotal; //ohm's law (fourier's equation) //The heat transfer from the pipe to the surrounding air //unit:Btu/hr +printf("The heat transfer from the pipe to the surrounding air is %f Btu/hr\n",Q); -- cgit