From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2223/CH9/EX9.3/Ex9_3.sav | Bin 0 -> 50672 bytes 2223/CH9/EX9.3/Ex9_3.sce | 83 +++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 83 insertions(+) create mode 100755 2223/CH9/EX9.3/Ex9_3.sav create mode 100755 2223/CH9/EX9.3/Ex9_3.sce (limited to '2223/CH9/EX9.3') diff --git a/2223/CH9/EX9.3/Ex9_3.sav b/2223/CH9/EX9.3/Ex9_3.sav new file mode 100755 index 000000000..ecdfda2f5 Binary files /dev/null and b/2223/CH9/EX9.3/Ex9_3.sav differ diff --git a/2223/CH9/EX9.3/Ex9_3.sce b/2223/CH9/EX9.3/Ex9_3.sce new file mode 100755 index 000000000..1bab42fcf --- /dev/null +++ b/2223/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,83 @@ +// scilab Code Exa 9.3 Calculation on an axial turbine stage + +dh=0.450; // hub diameter in m +dt=0.750; // tip diameter in m +d=0.5*(dt+dh); // mean diameter of the impeller blade in m +r=d/2; +R_m=0.5; // degree of reaction for mean section +T1=500; // Initial Temperature in degree C +t1=T1+273; // in Kelvin +p1=100; // Initial Pressure in bar +N=6e3; // rotor Speed in RPM +m=100; // in kg/s +alpha2m=75; // air angle at nozzle exit +beta_2m=0; // air angle at rotor entry +beta_3m=75; // air angle at rotor exit +// assuming radial equillibrium and free vortex flow in the stage, axial velocity is constant throughout +u_m=%pi*d*N/60; +uh=%pi*dh*N/60; +ut=%pi*dt*N/60; +// for mean section +c_xm=u_m*cotd(alpha2m); +c_2m=(1/sind(alpha2m))*u_m; +c_t2m=u_m; + +disp("for mean section") +// part(c) blade-to-gas speed ratio +sigma_m=u_m/c_2m; +disp(sigma_m,"(c)blade-to-gas speed ratio is") +// part(d) specific work +w_m=u_m*c_t2m; +disp("kJ/kg",w_m*1e-3,"(d)specific work is") +// part(e) the loading coefficient +shi_m=w_m/(u_m^2); +disp(shi_m,"(e)the loading coefficient is") + +// for hub section +rh=dh/2; +n=(sind(alpha2m)^2); +c_x2h=c_xm*((r/rh)^n); +c_t2h=c_t2m*((r/rh)^n); +c_2h=c_2m*((r/rh)^n); +disp("for hub section") +disp("(a) the relative air angles are") +beta2h=atand((c_t2h-uh)/c_x2h); +disp("degree",beta2h,"air angle at rotor entry is beta2h= ") +beta3h=atand(uh/c_x2h); +disp("degree",beta3h,"air angle at rotor exit is beta3h= ") +// part(b) degree of reaction +Rh=c_x2h*(tand(beta3h)-tand(beta2h))*100/(2*uh); +disp("%",Rh,"(b)degree of reaction is") +// part(c) blade-to-gas speed ratio +sigmah=uh/c_2h; +disp(sigmah,"(c)blade-to-gas speed ratio is") +// part(d) specific work +wh=uh*c_t2h; +disp("kJ/kg",wh*1e-3,"(d)specific work is") +// part(e) the loading coefficient +shi_h=wh/(uh^2); +disp(shi_h,"(e)the loading coefficient is") + +// for tip section +rt=dt/2; +c_x2t=c_xm*((r/rt)^n); +c_t2t=c_t2m*((r/rt)^n); +c_2t=c_2m*((r/rt)^n); +disp("for tip section") +disp("(a) the relative air angles are") +beta2t=atand((c_t2t-ut)/c_x2t); +disp("degree",beta2t,"air angle at rotor entry is beta2t= ") +beta3t=atand(ut/c_x2t); +disp("degree",beta3t,"air angle at rotor exit is beta3t= ") +// part(b) degree of reaction +Rt=c_x2t*(tand(beta3t)-tand(beta2t))*100/(2*ut); +disp("%",Rt,"(b)degree of reaction is") +// part(c) blade-to-gas speed ratio +sigmat=ut/c_2t; +disp(sigmat,"(c)blade-to-gas speed ratio is") +// part(d) specific work +wt=ut*c_t2t; +disp("kJ/kg",wt*1e-3,"(d)specific work is") +// part(e) the loading coefficient +shi_t=wt/(ut^2); +disp(shi_t,"(e)the loading coefficient is") -- cgit