From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2223/CH18/EX18.29/Ex18_29.sce | 61 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100755 2223/CH18/EX18.29/Ex18_29.sce (limited to '2223/CH18/EX18.29/Ex18_29.sce') diff --git a/2223/CH18/EX18.29/Ex18_29.sce b/2223/CH18/EX18.29/Ex18_29.sce new file mode 100755 index 000000000..89f23a68d --- /dev/null +++ b/2223/CH18/EX18.29/Ex18_29.sce @@ -0,0 +1,61 @@ +// scilab Code Exa 18.29 Centrifugal compressor with vaned diffuser +T01=310; // in Kelvin +p01=1.103; // Initial Pressure in bar +dh=0.10; // hub diameter in m +d2=0.55; // impeller diameter in m +c1=100; // Velocity of air at the entry of inducer +c3=c1; // Velocity of air at diffuser exit +shi=1.035; // power input factor +mu=0.9; // slip factor +m=7.5; // in kg/s +gamma=1.4; +N=15e3; // rotor Speed in RPM +disp("(a)for radially tipped blades") +cp=1005; // Specific Heat at Constant Pressure in J/(kgK) +R=287; +n_tt=0.81; // total to total efficiency +T1=T01-((c1^2)/(2*cp)); +p1=p01*((T1/T01)^(gamma/(gamma-1))); +ro1=(p1*1e5)/(R*T1); +A1=m/(ro1*c1); +dt=sqrt((A1*4/(%pi))+(dh^2)); +disp("cm",dt*1e2,"(i)tip diameter of the inducer at entry is") +d1=0.5*(dt+dh); // Mean Blade ring diameter +u1=%pi*d1*N/60; +w1=sqrt((u1^2)+(c1^2)); +a1=sqrt(gamma*R*T1); +M1_rel=w1/a1; +disp(M1_rel,"(ii)the Relative Mach number at inducer blade entry Mw1=") +u2=%pi*d2*N/60; +w_st=shi*mu*(u2^2); +T02=T01+(w_st/cp); +T02s=T01+(n_tt*(T02-T01)); +pr_0=(T02s/T01)^(gamma/(gamma-1)); +disp(pr_0,"(iii)stagnation pressure ratio developed is") +P=m*cp*(T02-T01); +disp("kW",P*1e-3,"(iv)the power required is") +disp("(b)for vaned diffuser") +c_theta2=mu*u2; // velocity of whirl(swirl component) at the impeller exit +// vaneless space between the impeller exit and the vaned diffuser entry=0.1*impeller radius +//r2s=r2*1.1; +// width of the casing after the impeller exit=1.4*impeller passage width +c_theta2s=c_theta2/(1.1*1.4); +cr2=c1; +cr2s=cr2/(1.1*1.4); +c2s=sqrt((cr2s^2)+(c_theta2s^2)); +alpha2s=atand(cr2s/c_theta2s); +disp("degree",alpha2s,"(i)the direction of flow at the diffuser entry is alpha2s=") +T2s=T02-((c2s^2)/(2*cp)); +a2s=sqrt(gamma*R*T2s); +M2s=c2s/a2s; +disp(M2s,"(ii)the Mach number at the diffuser entry is") +Ar=c2s/c3; +d3_2s=1.16; // d3/d2s from last trial given in the book +alpha3=acosd(cosd(alpha2s)/d3_2s); +Ar_v=d3_2s*sind(alpha3)/(sind(alpha2s)); +disp(Ar_v,"(iii)Area ratio of the vaned diffuser is") +T03=T02; +T3=T03-((c3^2)/(2*cp)); +pr3_1=(((T3*T01)/(T1*T03))^(gamma/(gamma-1)))*pr_0; +disp(pr3_1,"(iv)the static pressure ratio of the compressor is") +disp("comment: Calculations in the book are wrong in the beginning itself for p1. so the values slightly differs here only for part(a)") -- cgit