From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001
From: priyanka
Date: Wed, 24 Jun 2015 15:03:17 +0530
Subject: initial commit / add all books

---
 2223/CH18/EX18.13/Ex18_13.sav | Bin 0 -> 56928 bytes
 2223/CH18/EX18.13/Ex18_13.sce |  55 ++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 55 insertions(+)
 create mode 100755 2223/CH18/EX18.13/Ex18_13.sav
 create mode 100755 2223/CH18/EX18.13/Ex18_13.sce

(limited to '2223/CH18/EX18.13')

diff --git a/2223/CH18/EX18.13/Ex18_13.sav b/2223/CH18/EX18.13/Ex18_13.sav
new file mode 100755
index 000000000..9641ce3e5
Binary files /dev/null and b/2223/CH18/EX18.13/Ex18_13.sav differ
diff --git a/2223/CH18/EX18.13/Ex18_13.sce b/2223/CH18/EX18.13/Ex18_13.sce
new file mode 100755
index 000000000..9169fc8bd
--- /dev/null
+++ b/2223/CH18/EX18.13/Ex18_13.sce
@@ -0,0 +1,55 @@
+// scilab Code Exa 18.13 Turbojet Gas Turbine Engine
+
+T1=223.15; // in Kelvin
+n_C=0.75; // Compressor Efficiency
+c1=85; // entry velocity in m/s
+m=50; // mass flow rate of air in kg/s
+R=287;
+n_B=0.98; // Combustion chamber Efficiency
+Qf=43*1e3; // Calorific Value of fuel in kJ/kg;
+T03=1220;  // Turbine inlet stagnation temp in Kelvin
+n_T=0.8; // Turbine Efficiency
+gamma=1.4; // Specific Heat Ratio
+n_m=0.98; // Mechanical efficiency
+sigma=0.5; // flight to jet speed ratio(u/ce)
+n_N=0.98; // exhaust nozzle efficiency
+cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)
+u=886/3.6; // flight speed of a turbo prop aircraft in m/s
+delT=200; // temperature rise through the compressor(T02-T01) in K
+pi=.701; // Initial Pressure in bar
+n_D=0.88; // inlet diffuser efficiency
+a1=sqrt(gamma*R*T1);
+M1=u/a1; // Mach number at the compressor inlet
+T1_01=0.881; // (T1/T01)from isentropic flow gas tables at M1 and gamma values
+T01=T1/T1_01;
+T1=T01-(0.5*(c1^2)/(cp*1e3));
+
+// part(a) compressor pressure ratio
+T02s=T01+(delT*n_C);
+r_oc=(T02s/T01)^(gamma/(gamma-1)); //compressor pressure ratio(p02/p01)
+disp(r_oc,"(a)compressor pressure ratio is")
+
+// part(b)
+T02=T01+delT;
+f=((cp*T03)-(cp*T02))/((Qf*n_B)-(cp*T03)); // f=(ma/mf);energy balance in the combustion chamber 
+disp(1/f,"(b)Air-Fuel Ratio is")
+
+// part(c) turbine pressure ratio
+// turbine power input P_T=n_m*(ma+mf)*cp*(T03-T01)
+// power input to the compressor P_C=ma*cp*(T02-T01)
+T04s=T03-(delT/(n_m*n_T*(1+f))); // from energy balance P_T=P_C
+r_ot=(T03/T04s)^(gamma/(gamma-1)); //turbine pressure ratio(p03/p04)
+disp(r_ot,"(c)turbine pressure ratio is")
+
+// part(d)exhaust nozzle pressure ratio
+ce=u/sigma; // jet velocity at the exit of the exhaust nozzle
+T04=T03-(delT/(n_m*(1+f)));
+Te=T04-(0.5*(ce^2)/(cp*1e3));
+Tes=T04-((T04-Te)/n_N);
+r_N=(T04/Tes)^(gamma/(gamma-1)); //exhaust nozzle pressure ratio(p04/pe)
+disp(r_N,"(d)exhaust nozzle pressure ratio is")
+ae=sqrt(gamma*R*Te);
+Me=ce/ae; // Mach number
+disp(Me,"and the Mach Number is")
+
+
-- 
cgit