From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2219/CH5/EX5.1/Ex5_1.sce | 16 ++++++++++++++++ 2219/CH5/EX5.2/Ex5_2.sce | 25 +++++++++++++++++++++++++ 2219/CH5/EX5.3/Ex5_3.sce | 26 ++++++++++++++++++++++++++ 2219/CH5/EX5.4/Ex5_4.sce | 20 ++++++++++++++++++++ 2219/CH5/EX5.5/Ex5_5.sce | 20 ++++++++++++++++++++ 2219/CH5/EX5.6/Ex5_6.sce | 22 ++++++++++++++++++++++ 2219/CH5/EX5.7/Ex5_7.sce | 24 ++++++++++++++++++++++++ 2219/CH5/EX5.8/Ex5_8.sce | 18 ++++++++++++++++++ 8 files changed, 171 insertions(+) create mode 100755 2219/CH5/EX5.1/Ex5_1.sce create mode 100755 2219/CH5/EX5.2/Ex5_2.sce create mode 100755 2219/CH5/EX5.3/Ex5_3.sce create mode 100755 2219/CH5/EX5.4/Ex5_4.sce create mode 100755 2219/CH5/EX5.5/Ex5_5.sce create mode 100755 2219/CH5/EX5.6/Ex5_6.sce create mode 100755 2219/CH5/EX5.7/Ex5_7.sce create mode 100755 2219/CH5/EX5.8/Ex5_8.sce (limited to '2219/CH5') diff --git a/2219/CH5/EX5.1/Ex5_1.sce b/2219/CH5/EX5.1/Ex5_1.sce new file mode 100755 index 000000000..e55735bba --- /dev/null +++ b/2219/CH5/EX5.1/Ex5_1.sce @@ -0,0 +1,16 @@ +//chapter 5 example 1 pg no-226 +//============================================================================= +clc; +clear; +//Given Data +F = 100*10^9;//reflex klystron operating frequency +n = 3;//integer corresponding to mode + +//Calculations +T_c = (n+(3/4))//transit time in cycles +T = T_c/F//transit time in seconds + +//Output +mprintf('Transit Time of the electron in the repeller space is %3.1f ps',T/10^-12); + +//============================================================================= diff --git a/2219/CH5/EX5.2/Ex5_2.sce b/2219/CH5/EX5.2/Ex5_2.sce new file mode 100755 index 000000000..f9ce4d5d8 --- /dev/null +++ b/2219/CH5/EX5.2/Ex5_2.sce @@ -0,0 +1,25 @@ +//chapter 5 example 1 pg no-227 +//============================================================================= +clc; +clear; +//Given Data +F = 2*10^9;//reflex klystron operating frequency +Vr = 2000;//Repeller voltage +Va = 500;//Accelarating voltage +n = 1;//integer corresponding to mode +e = 1.6*10^-19;//charge of electron +m = 9.1*10^-31;//mass of electron in kg +s = 2*10^-2;//space b/w exit of gap and repeller electrode +dVr1 = 2;//(change in Vr in percentage +//Calculations +dVr = dVr1*Vr/100;//conversion from percentage to decimal +//dVr/df = ((2*pi*s)/((2*pi*n)-pi/2))*sqrt(8*m*Va/e)); +//let df = dVr/((2*pi*s)/((2*pi*n)-pi/2))*sqrt(8*m*Va/e)); + +df = (dVr)/((2*%pi*s)/((2*%pi*n)-(%pi/2))*sqrt(8*m*Va/e));//change in freq as a fun of repeller voltage + + +//Output +mprintf('Change in frequency is %3.0f MHz',df/10^6); + +//============================================================================= diff --git a/2219/CH5/EX5.3/Ex5_3.sce b/2219/CH5/EX5.3/Ex5_3.sce new file mode 100755 index 000000000..258b03cd2 --- /dev/null +++ b/2219/CH5/EX5.3/Ex5_3.sce @@ -0,0 +1,26 @@ +//chapter 5 example 3 +//============================================================================= +clc; +clear; +//Given Data +//let l = dVr/Vr ; f = df/f ; Vr/f = R +l = 5;//percentage change in repeller voltage +f = 1;//percentage change in operating frequency +R = 1;//ratio of repeller voltage to operating frequency +NR = 1.5;//new ratio of repeller voltage to operating frequency in volts/MHz +e = 1.6*10^-19;//charge of electron +m = 9.1*10^-31;//mass of electron in kg + +//Calculations + +//dVr/df = ((2*pi*s)/((2*pi*n)-pi/2))*sqrt(8*m*Va/e)); +//((df/f)/(dVr/Vr)) = (Vr/f)*((2*pi*n)-pi/2)/(2*pi*s)*sqrt(e/(8*m*Va)); +//((df/f)/(dVr/Vr)) = K*(Vr/f); +//where K = (((2*pi*n)-pi/2)/(2*pi*s))*sqrt(e/(8*m*Va)) +K = (f/l)*(1/R) +PCF = NR*K*l//percentage change in frequency when new ratio (Vr/f)=1.5 + +//Output +mprintf('Percentage Change in frequency is %3.2f percent',PCF); + +//============================================================================= diff --git a/2219/CH5/EX5.4/Ex5_4.sce b/2219/CH5/EX5.4/Ex5_4.sce new file mode 100755 index 000000000..0b9476752 --- /dev/null +++ b/2219/CH5/EX5.4/Ex5_4.sce @@ -0,0 +1,20 @@ +//chapter 5 example 4 +//============================================================================= +clc; +clear; +//Given Data +Va = 40*10^3;//Anode voltage of cross field amplifier +Ia = 15;//Anode current in Amp +Pin = 40*10^3;//input power in watts +G = 10;//gain in dB +n = 40/100;//overall efficiency converted from percentage to decimal +//Calculations +//Gain = (1+(Pgen/Pin)) +Pgen = (G-1)*Pin//Generated power +ne = (Pgen/(Va*Ia))//electronic efficiency +nc = n/(ne)//circuit efficiency +Pout = Pin+(Pgen*nc)//output power +//Output +mprintf('Electronic Efficiency is %3.2f\n Output power is %g KW',ne,Pout/1000); + +//============================================================================= diff --git a/2219/CH5/EX5.5/Ex5_5.sce b/2219/CH5/EX5.5/Ex5_5.sce new file mode 100755 index 000000000..cf36099aa --- /dev/null +++ b/2219/CH5/EX5.5/Ex5_5.sce @@ -0,0 +1,20 @@ +//chapter 5 example 5 +//============================================================================= +clc; +clear; +//Given Data +F = 1*10^9;//two cavity klystron operating frequency +Va = 2500;//Accelarating voltage in volts +e = 1.6*10^-19;//charge of electron +m = 9.1*10^-31;//mass of electron in kg +s = 0.1*10^-2;//input cavity space +//Calculations + +u = sqrt((2*e*Va)/m);//velocity at which electron beam enters the gap +T = s/u ;//Time spent in the gap +f = T*F;//number of cycles + +//Output +mprintf('Number of cycles that elase during transit of beam through input gap is %3.3f cycle',f); + +//============================================================================= diff --git a/2219/CH5/EX5.6/Ex5_6.sce b/2219/CH5/EX5.6/Ex5_6.sce new file mode 100755 index 000000000..ac9a0e5db --- /dev/null +++ b/2219/CH5/EX5.6/Ex5_6.sce @@ -0,0 +1,22 @@ +//chapter 5 example 6 +//============================================================================= +clc; +clear; +//Given Data +N = 8;//no. of resonators + +//Calculations +mprintf('ϕ = (2*π*n)/N \n');//phase difference +mprintf(' ϕ = (n*π)/4\n');//phase difference +K = N/2;//useful no. of nodes +//Most dominant mode is the one for which phase differnce b/w adjacent resonators is π radians +//Therefore (n*π)/4 = π +n = 4 + + +//Output +mprintf('Number of possible modes of Resonance is %d\n',N); +mprintf('Number of useful modes of Resonance is %d\n',K); +mprintf('value of integer n for the most dominant mode is %d',n); + +//============================================================================= diff --git a/2219/CH5/EX5.7/Ex5_7.sce b/2219/CH5/EX5.7/Ex5_7.sce new file mode 100755 index 000000000..5269ad41e --- /dev/null +++ b/2219/CH5/EX5.7/Ex5_7.sce @@ -0,0 +1,24 @@ +//chapter 5 example 7 +//============================================================================= +clc; +clear; +//Given Data +Va = 1200;//Anode potential +F = 10*10^9;//Operating frequency in Hz +S = 5*10^-2;//spacing b/w 2 cavities +GS = 1*10^-3;//gap spacing in either cavity +e = 1.6*10^-19;//charge of electron +m = 9.1*10^-31;//mass of electron in kg +//Calculations +//Condition of maximum output is (V1/Vo)max = (3.68)/((2*pi*n)-(pi/2); +//(2*pi*n)-(pi/2) = Transit angle b/w two cavities +//V1 = Peak amplitude of RF i/p +//Vo = accelarating potential + +Vo = sqrt(2*e*Va/m);//velocity of the electrons +T = S/Vo;//Transit time b/w the cavities +TA = 2*%pi*F*T;//transit angle in radians +V1 = (3.68*Va)/TA; +//Output +mprintf('Required Peak Amplitude of i/p RF signal is %3.2f volts',V1); +//============================================================================= diff --git a/2219/CH5/EX5.8/Ex5_8.sce b/2219/CH5/EX5.8/Ex5_8.sce new file mode 100755 index 000000000..1bcc67c67 --- /dev/null +++ b/2219/CH5/EX5.8/Ex5_8.sce @@ -0,0 +1,18 @@ +//chapter 5 example 8 +//============================================================================= +clc; +clear; +// Given Data +R = 10; // circumference to pitch ratio +e = 1.6*10^-19; // charge of electron +m = 9.1*10^-31; // mass of electron in Kg +c = 3*10^8; // vel. of EM waves in m/s + +// Calculations +Vp = c/R; // axial phase velocity = free space vel*(pitch/circumference) +Va = (Vp^2 * m)/(2*e); + +// Output +mprintf('Anode Voltage = %3.2f kV',Va/1000); +disp('In practice,the electron beam velocity is kept slightly greater than the axial phase velocity of RF signal') +//------------------------------------------------------------------------------ -- cgit