From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2087/CH18/EX18.3/example18_3.sce | 214 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 214 insertions(+) create mode 100755 2087/CH18/EX18.3/example18_3.sce (limited to '2087/CH18/EX18.3') diff --git a/2087/CH18/EX18.3/example18_3.sce b/2087/CH18/EX18.3/example18_3.sce new file mode 100755 index 000000000..151954226 --- /dev/null +++ b/2087/CH18/EX18.3/example18_3.sce @@ -0,0 +1,214 @@ + +//example 18.3 +//design a cross -regulator and head regulatorfor a distributory channel +clc;funcprot(0); +//givrn +Q=100; //discharge of parent channel +Qd=15; //discharge ofdistributory +fsl_u=218.1; //F.S.L of upstream parent channel +fsl_d=217.9; //F.S.L of downstream of parent channel +bw_u=42; //bed width of parent channel upstream +bw_d=38; //bed width of parent channel downstream +hw=2.5; //depth of water in parent channel +fsl_dis=217.1; //F.S.L of distributory +hw_dis=1.5; //depth of water in distributory +Ge=1/5; //permissible exit gradient + +//design of cross regulator +mprintf("DESIGN OF CROSS-REGULATOR::"); +//design of crest and waterway +mprintf("\n\ndesign of crest and waterway:"); +cl=fsl_u-hw; +h=fsl_u-fsl_d; +d=fsl_d-cl; +C1=0.557;C2=0.8; +L=Q/(2*C1*(2*9.81)^0.5*h^1.5/3+C2*d*(2*9.81*h)^0.5); +L=round(L*10)/10; +mprintf("\ncrest level=%f m.",cl); +mprintf("\nlength of crest=%f m.",L); +mprintf("\nprovide 4 bays of 7 m each with a clear water-way."); +tw=28+4.5; +mprintf("\nprovide 3 piers of 1.5 m width each.\ntotal width of cross regulator=%f m.",tw); +//design of d/s floor +L=28; +q=Q/L; +Hl=fsl_u-fsl_d; +Ef2=1.89; //from blench curve +fl_d=fsl_d-Ef2; +mprintf("\n\ndesign of d/s floor:"); +mprintf("\nd/s floor level=%f m.; which is higher than d/s bed level.\nadopt floor level =d/s bed level=215.40 m.",fl_d); +Ef1=Ef2+Hl; +//from specific energy curve +D1=0.7;D2=1.65; +cil=5*(D2-D1); //cistern length +tl=2*16/3; +tl=round(tl*10)/10; +mprintf("\ncistern length =%f m.\nlength of d/s floor=%f m.",cil,tl); +//design of impervious floor +d1=hw/3+0.6; //depth of u/s cut-off +w=0.5; //width of cut-off +d2=hw/2+0.6; //deth of d/s cut-off +d2=2; //keep +Hs=fsl_u-(fsl_d-hw); //maximum static head +n=Ge*d2/Hs; //n=1/%pi*(lambda)^0.5; +//from exit gradient curves we get +alpha=8;n=0.148; +b=alpha*d2; +mprintf("\n\ndesign of impervious floor:"); +mprintf("\ntotal length of impervious floor=%i m.;which is divided as-",b); +mprintf("\nd/s floor length=10.6 m.\nd/s glacis length with 2:1 slope=0.4 m.\nbalance to be provided upstream=5 m."); +d1=1.5;b=16; +alpha_=d1/b; +//hence +fic1=100-28; +fid1=100-19; +t=0.5; +fic1=fic1+(fid1-fic1)*t/d1; +mprintf("\n\npressure calculation:\nupstream cut-off:\npressure =%f percent.",fic1); +d2=2;b=16; +alpha_=d2/b; +//hence +t=0.6; +fie2=31;fid2=22; +fie2=fie2-(fie2-fid2)*t/d2; +mprintf("\ndownstream cut-off:\npressure=%f percent.",fie2); +t=10.6; +p=fie2+(fic1-fie2)*t/b; +p=round(p*10)/10; +mprintf("\ntoe of glacis:\npressure=%f percent.",p); +mprintf("\n\nthickness of floor:\nminimu thickness for u/s floor=0.5 m."); +rho=2.24; +t=fie2*2.7/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness of floor near d/s cut-off=%f m.\nprovide 0.7 m thick floor for last 2.1 m length.",t); +t=1.6/(rho-1); +t=round(t*100)/100; +mprintf("\nthickness of floor at toe of glacis=%f m.",t); +t=6.6; +p=fie2+(fic1-fie2)*t/b; +t=p*2.7/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness of floor at 4 m from toe of glais=%f m.\nprovide 1.1 m thick floor for next 2 m length",t); +t=4.6; +p=fie2+(fic1-fie2)*t/b; +t=p*2.7/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness of floor at 6 m from toe of glais=%f m.\nprovide 0.9 m thick floor for next 2.5 m length",t); + +//design of u/s protection +d1=hw/3+0.6; +v=d1; +v=round(v*100)/100; +mprintf("\n\ndesign of u/s protection:\nvolume of block protection=%f cubic metre/metre.",v); +mprintf("\nkeep thickness of protection=1 m.\nprovide 0.8mx0.8mx0.6m thick concret blocks over 0.4 m thick apron in length of 0.6 m."); +cu=2.25*d1; +cu=round(cu*100)/100; +mprintf("\ncubic content of launching apron=%f cubic metre/metre.\nprovide 1 m thick and 3.5 m long launching apron.",cu); +//design of d/s protection +d2=hw/2+0.6; +v=d2; +v=round(v*100)/100; +mprintf("\n\ndesign of d/s protection:\nvolume of inverted filter=%f cubic metre/metre.",v); +mprintf("\nkeep thickness of concrete block=0.6 m.\nprovide 2 rows of 0.8mx0.8mx0.6m thick concret blocks over 0.6 m graded filter for length of 1.6 m."); +cu=2.25*d2; +cu=round(cu*100)/100; +mprintf("\nlaunching apron volume=%f cubic metre/metre.\nprovide 1 m thick launching apron for length of 4.5 m.\nprovide a toe wall 0.4 m wide and 1.5 m deep between filter and launching apron.",cu); + +//design of head regulator +mprintf("\n\n\nDESIGN OF DISTRIBUTORY HEAD REGULATOR::"); +//design of crest and waterway +mprintf("\n\ndesign of crest and waterway:"); +cl=fsl_u-hw+0.5; +h=fsl_u-fsl_dis; +d=fsl_dis-cl; +C1=0.557;C2=0.8; +L=Qd/(2*C1*(2*9.81)^0.5*h^1.5/3+C2*d*(2*9.81*h)^0.5); +L=round(L*100)/100; +mprintf("\ncrest level=%f m.",cl); +mprintf("\nlength of crest=%f m.",L); +mprintf("\nprovide 2 bays of 3.5 m each with a 1 m thick pier in between."); +tw=8; +mprintf("\ntotal width of cross regulator=%f m.",tw); +//design of d/s floor +L=7.5; +q=Q/L; +Hl=fsl_u-fsl_dis; +Ef2=1.58; //from blench curve +fl_d=fsl_dis-Ef2; +mprintf("\n\ndesign of d/s floor:"); +mprintf("\nd/s floor level=%f m.;\nkeepR.L of d/s floor=215.50 m.",fl_d); +Ef1=Ef2+Hl; +//from specific energy curve +D1=0.42;D2=2.55; +cil=5*(D2-D1); //cistern length +tl=2*14/3; +mprintf("\ncistern length =%f m.",cil); + +//design of impervious floor +d1=hw/3+0.6; //depth of u/s cut-off +w=0.5; //width of cut-off +d2=hw_dis/2+0.6; //deth of d/s cut-off +d2=2; //keep +Hs=fsl_u-215.5; //maximum static head +n=Ge*d2/Hs; //n=1/%pi*(lambda)^0.5; +//from exit gradient curves we get +alpha=7;n=0.154; +b=alpha*d2; +mprintf("\n\ndesign of impervious floor:"); +mprintf("\ntotal length of impervious floor=%i m.;which is divided as-",b); +mprintf("\nlength below the toe of glacis=10.5 m\nlength of d/s glacis at 2:1 slope=1.2 m.\nwidth of crest=1 m.\nlength of u/s glacis at 1:1 slope=0.5 m.\nu/s floor:balnce=0.8 m."); +d1=1.5;b=16; +alpha_=d1/b; +//hence +fic1=100-28; +fid1=100-19; +t=0.5; +fic1=fic1+(fid1-fic1)*t/d1; +mprintf("\n\npressure calculation:\nupstream cut-off:\npressure =%f percent.",fic1); +d2=2;b=16; +alpha_=d2/b; +//hence +t=0.6; +fie2=31;fid2=22; +fie2=fie2-(fie2-fid2)*t/d2; +mprintf("\ndownstream cut-off:\npressure=%f percent.",fie2); +t=10.6; +p=fie2+(fic1-fie2)*t/b; +p=round(p*100)/100; +mprintf("\ntoe of glacis:\npressure=%f percent.",p); +mprintf("\n\nthickness of floor:\nminimu thickness for u/s floor=0.5 m."); +rho=2.24; +t=p*2.6/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness under the crest=1 m."); +mprintf("\nthickness of floor at toe of glacis=%f m.",t); +t=9.5; +p=fie2+(fic1-fie2)*t/b; +t=p*2.7/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness of floor at 2 m from toe of glais=%f m.\nprovide 1.1 m thick floor for next 4 m length",t); +t=4.5; +p=fie2+(fic1-fie2)*t/b; +t=p*2.7/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness of floor at 6 m from toe of glais=%f m.\nprovide 0.9 m thick floor for next 2.5 m length",t); +t=2; +p=fie2+(fic1-fie2)*t/b; +t=p*2.7/(100*(rho-1)); +t=round(t*100)/100; +mprintf("\nthickness of floor at 8.5 m from toe of glais=%f m.\nprovide 0.7 m thick floor for next 2 m length",t); + +//design of upstream protection +d=hw/3+0.6; +d=round(d*10)/10; +mprintf("\n\ndesign of u/s protection:\nu/s scour depth=%f m.\nprovide same protection as in cross regulator",d); + +//design of d/s protection +d2=hw_dis/2+0.6; +v=d2; +mprintf("\n\ndesign of d/s protection:\nvolume of inverted filter=%f cubic metre/metre.",v); +mprintf("\nkeep thickness of concrete block=0.5 m.\nprovide 2 rows of 0.8mx0.8mx0.5m thick concret blocks over 0.5 m thick graded filter."); +cu=2.25*d2; +mprintf("\nlaunching apron volume=%f cubic metre/metre.\nprovide 1 m thick launching apron for length of 3.5 m.\nprovide a masonary toe wall 0.4 m wide and 1.2 m deep between filter and launching apron.",cu); + + -- cgit