From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 2087/CH15/EX15.1/example15_1.sce | 36 +++++++++++++++++ 2087/CH15/EX15.2/example15_2.sce | 19 +++++++++ 2087/CH15/EX15.3/example15_3.sce | 83 ++++++++++++++++++++++++++++++++++++++++ 2087/CH15/EX15.4/example15_4.sce | 21 ++++++++++ 4 files changed, 159 insertions(+) create mode 100755 2087/CH15/EX15.1/example15_1.sce create mode 100755 2087/CH15/EX15.2/example15_2.sce create mode 100755 2087/CH15/EX15.3/example15_3.sce create mode 100755 2087/CH15/EX15.4/example15_4.sce (limited to '2087/CH15') diff --git a/2087/CH15/EX15.1/example15_1.sce b/2087/CH15/EX15.1/example15_1.sce new file mode 100755 index 000000000..9ff7b77a4 --- /dev/null +++ b/2087/CH15/EX15.1/example15_1.sce @@ -0,0 +1,36 @@ + + +//example 15.1 +//design a channel by Kennedy theory using Garret's diagram +clc;funcprot(0); +//given +Q=7; //full supply discharge +N=0.0225; //rogosity coefficient +S=1/4444; //bed slope +m=1; //critical velocity ratio +s=1/2; //side slope + +//Values of B and D are obtained by Garret's diagram fig. 15.3(b) and tabulated as below +B=[6 7 6.75]; //width of bed from Garret diagram +D=[1.5 1.35 1.38]; //depth of bed from Garret diagram +Vo=[0.72 0.673 0.685]; //from Garret diagram + +mprintf("Bed width Depth Ratio of V/Vo: Remarks"); +for i=1:3 + A(i)=B(i)*D(i)+D(i)^2/2; //Area + V(i)=Q/A(i); //Velocity + r(i)=V(i)/Vo(i); //ratio V/Vo + r(i)=round(r(i)*1000)/1000; + if i==1 then + s='small'; +else + if (i==2) then + s='more'; + +else + s='satisfactory'; +end +end + mprintf("\n%f %f %f %s",B(i),D(i),r(i),s); +end +mprintf("\nHence, B=%f m; D=%f m.",B(3),D(3)); diff --git a/2087/CH15/EX15.2/example15_2.sce b/2087/CH15/EX15.2/example15_2.sce new file mode 100755 index 000000000..51defb483 --- /dev/null +++ b/2087/CH15/EX15.2/example15_2.sce @@ -0,0 +1,19 @@ + + +//example 15.2 +//design an irrigation channel in alluvial soil by Laecy's theory +clc;funcprot(0); +//given +Q=15; //Full supply discharge +f=1; //silt factor +s=1/2; //side slope of channel + +//from Laecey regime channel (Fig.15.4(b)) B and D is obtained as; +B=15.1; +D=1.38; +//also from Fig.15.5 we get slope as +S=0.19/1000; +mprintf("Width of channel section=%f m.",B); +mprintf("\nDepth of channel section=%f m.",D); +mprintf("\nBed slope=%f.",S); + diff --git a/2087/CH15/EX15.3/example15_3.sce b/2087/CH15/EX15.3/example15_3.sce new file mode 100755 index 000000000..05d5789f5 --- /dev/null +++ b/2087/CH15/EX15.3/example15_3.sce @@ -0,0 +1,83 @@ + + +//example 15.3 +//design and prepare the longitudnal section;schedule of area statistics and channel dimension of irrigation channel +clc;funcprot(0); +//given +dl=157.7; //datum level +fsl=157; //full supply level of parent channel +bl=156; //bed level of parent channel +kor_r=4; //kor period of rabi +kor_k=2.5; //kor period of kharif +kord_r=13.4; //kor depth of rabi +kord_k=19; //kor depth of kharif +s=0.5; //side slope +m=1; //critical velocity ratio +N=0.0225; //Kutter n +qo_r=8.64*7*kor_r*100/kord_r; //outlet discharge for rabi(calculation is wrong in book) +qo_k=8.64*7*kor_k*100/kord_k; //outlet discharge for kharif(calculation is wrong in book) +ca=16000; //culturable commanded area +Ir=0.3; //intensity of irrigation in rabi +Ik=0.125; //intensity of irrigation in rabi +Ar=Ir*ca; //area under rabi +Ak=ca*Ik; //area under kharif +q_r=Ar/qo_r; +q_k=Ak/qo_k; +q_r=round(q_r*100)/100; +q_k=round(q_k*100)/100; +mprintf("discharge neede for rabi crop=%f cumecs.",q_r); +mprintf("\ndischarge neede for kharif crop=%f cumecs.",q_k); +mprintf("\noutlet discharge factor adopted=%i hectares per cumecs.",qo_r); +//at km 5 +ca=8000; //culturable area +Ar=Ir*ca; //area under rabi +q_r=Ar/qo_r; +l=0.5 //total loss after 5 km +q=q_r+l; //total discharge +dq=1.1*q; //desigm discharge +S=1/4000; //slope +B=[5.5 4.9 4.55]; //Bed width +D=[0.73 0.79 0.84]; //water depth +Vo=[0.448 0.472 0.488]; //critical velocity +mprintf("\n\nBed width water depth area velocity critical velocity C.V.R"); +for i=1:3 + A(i)=B(i)*D(i)+D(i)^2/2; + V(i)=dq/A(i); + m(i)=V(i)/Vo(i); + A(i)=round(A(i)*100)/100; + V(i)=round(V(i)*1000)/1000; + m(i)=round(m(i)*100)/100; + mprintf("\n%f %f %f %f %f %f",B(i),D(i),A(i),V(i),Vo(i),m(i)); +end +B=4.55;D=0.84; +mprintf("\nhence take B=%f .; D=%f m.",B,D); +//at km 4 +q=round(q*100)/100; +mprintf("\ndischarge at 5 km=%f cumecs.",q); +ca=10000; //culturable area +Ar=Ir*ca; //area under rabi +q_r=Ar/qo_r; +l=0.5 //total loss below 5 km +P=B+D*5^0.5; //wetted perimeter +l1=P*1000*2/1000000; //loss between 5 km and 4km +l2=l1+l; +q=q_r+l2; +dq=1.1*q; +q=round(q*1000)/1000; +mprintf("\ndischarge at 4 km =%f cumecs",q); +mprintf("\nother discharge are calculated and are tabulated as:"); +x=[0:1:5]; +A1=[4800 4200 3600 3300 3000 2400]; +A2=[2000 1750 1500 1375 1250 1000]; +S=[22.5 22.5 22.5 24 24 25]; +B=[5.5 5.2 4.85 4.7 4.55 4.55]; +D=[1.04 1.007 0.975 0.945 0.915 0.840]; +dq=[3.56 3.17 2.8 2.6 2.4 2.02]; +V=[0.570 0.555 0.538 0.530 0.521 0.484]; +m=[1.015 1 1 1 1 0.992]; +mprintf("\n\nBelow km area to irrigate rabi area to irrigate kharif bed slope bed width water depth design discharge velocity C.V.R"); +for i=1:6 + mprintf("\n%i %i %i %f %f %f %f %f %f",x(i),A1(i),A2(i),S(i),B(i),D(i),dq(i),V(i),m(i)); +end + + diff --git a/2087/CH15/EX15.4/example15_4.sce b/2087/CH15/EX15.4/example15_4.sce new file mode 100755 index 000000000..bb347904f --- /dev/null +++ b/2087/CH15/EX15.4/example15_4.sce @@ -0,0 +1,21 @@ + + +//example 15.4 +//calculate the economical depth of cutting for cross section of channel +clc;funcprot(0); +//given +B=5; //bed width +t=2; //top width of banks +h=2.92; //heigth of banks from bed +n=1.5; + +//sectional area of digging=sectional area of two banks +//By+zy^2=2(h-y)+2n(h-y)^2 +//substituting the values and on simplificatio we get +s=poly([18.59,-13.26,1],'x','c'); +y=roots(s); +//from this we get y=11.666556 and 1.5934436. +//taking +y=1.5934436; +y=round(y*10)/10; +mprintf("economical depth of cutting=%f m.",y); -- cgit