From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1964/CH4/EX4.1/ex4_1.sce | 67 ++++++++++++++++++++++++++++++++++++++++++++++ 1964/CH4/EX4.10/ex4_10.sce | 22 +++++++++++++++ 1964/CH4/EX4.11/ex4_11.sce | 12 +++++++++ 1964/CH4/EX4.12/ex4_12.sce | 29 ++++++++++++++++++++ 1964/CH4/EX4.13/ex4_13.sce | 28 +++++++++++++++++++ 1964/CH4/EX4.14/ex4_14.sce | 15 +++++++++++ 1964/CH4/EX4.15/ex4_15.sce | 14 ++++++++++ 1964/CH4/EX4.16/ex4_16.sce | 19 +++++++++++++ 1964/CH4/EX4.17/ex4_17.sce | 23 ++++++++++++++++ 1964/CH4/EX4.18/ex4_18.sce | 20 ++++++++++++++ 1964/CH4/EX4.19/ex4_19.sce | 17 ++++++++++++ 1964/CH4/EX4.2/ex4_2.sce | 31 +++++++++++++++++++++ 1964/CH4/EX4.20/ex4_20.sce | 19 +++++++++++++ 1964/CH4/EX4.21/ex4_21.sce | 29 ++++++++++++++++++++ 1964/CH4/EX4.22/ex4_22.sce | 33 +++++++++++++++++++++++ 1964/CH4/EX4.23/ex4_23.sce | 40 +++++++++++++++++++++++++++ 1964/CH4/EX4.24/ex4_24.sce | 15 +++++++++++ 1964/CH4/EX4.25/ex4_25.sce | 62 ++++++++++++++++++++++++++++++++++++++++++ 1964/CH4/EX4.3/ex4_3.sce | 15 +++++++++++ 1964/CH4/EX4.4/ex4_4.sce | 11 ++++++++ 1964/CH4/EX4.5/ex4_5.sce | 29 ++++++++++++++++++++ 1964/CH4/EX4.6/ex4_6.sce | 25 +++++++++++++++++ 1964/CH4/EX4.7/ex4_7.sce | 14 ++++++++++ 1964/CH4/EX4.8/ex4_8.sce | 15 +++++++++++ 1964/CH4/EX4.9/ex4_9.sce | 19 +++++++++++++ 25 files changed, 623 insertions(+) create mode 100755 1964/CH4/EX4.1/ex4_1.sce create mode 100755 1964/CH4/EX4.10/ex4_10.sce create mode 100755 1964/CH4/EX4.11/ex4_11.sce create mode 100755 1964/CH4/EX4.12/ex4_12.sce create mode 100755 1964/CH4/EX4.13/ex4_13.sce create mode 100755 1964/CH4/EX4.14/ex4_14.sce create mode 100755 1964/CH4/EX4.15/ex4_15.sce create mode 100755 1964/CH4/EX4.16/ex4_16.sce create mode 100755 1964/CH4/EX4.17/ex4_17.sce create mode 100755 1964/CH4/EX4.18/ex4_18.sce create mode 100755 1964/CH4/EX4.19/ex4_19.sce create mode 100755 1964/CH4/EX4.2/ex4_2.sce create mode 100755 1964/CH4/EX4.20/ex4_20.sce create mode 100755 1964/CH4/EX4.21/ex4_21.sce create mode 100755 1964/CH4/EX4.22/ex4_22.sce create mode 100755 1964/CH4/EX4.23/ex4_23.sce create mode 100755 1964/CH4/EX4.24/ex4_24.sce create mode 100755 1964/CH4/EX4.25/ex4_25.sce create mode 100755 1964/CH4/EX4.3/ex4_3.sce create mode 100755 1964/CH4/EX4.4/ex4_4.sce create mode 100755 1964/CH4/EX4.5/ex4_5.sce create mode 100755 1964/CH4/EX4.6/ex4_6.sce create mode 100755 1964/CH4/EX4.7/ex4_7.sce create mode 100755 1964/CH4/EX4.8/ex4_8.sce create mode 100755 1964/CH4/EX4.9/ex4_9.sce (limited to '1964/CH4') diff --git a/1964/CH4/EX4.1/ex4_1.sce b/1964/CH4/EX4.1/ex4_1.sce new file mode 100755 index 000000000..50a552548 --- /dev/null +++ b/1964/CH4/EX4.1/ex4_1.sce @@ -0,0 +1,67 @@ +//Chapter-4, Example 4.1, Page 126 +//============================================================================= +clc +clear +//CALCULATIONS +//for WAVEFORM 1 +//Average Value +b1=2; +h1=5; +area1=0.5*b1*h1;//area under one complete cycle(area of a triangle) +av0=area1/2;//average value +//rms value +area2=0.33*(h1)^2*b1; +rms=sqrt(area2/b1);//rms value +//form factor +ff=rms/av0;//form factor +//peak factor +Kp=h1/rms;//peak factor +mprintf("WAVEFORM 1\n"); +mprintf("average value=%1.1f amps,rms value=%1.3f amps,formfactor=%1.3f ,peak factor=%1.3f\n",av0,rms,ff,Kp); +//for WAVEFORM 2 +//Average Value +T=1;//assuming time period is 1 +h2=100; +h3=-50; +area3=(h2+h3)*(T/2);//area under one complete cycle(area of a rectangle) +av=area3/T;//average value +//rms value +area_under_squared_curve=((h2)^2+(h3)^2)*(T/2); +rms1=sqrt(area_under_squared_curve/T);//rms value +//form factor +ff1=rms1/av;//form factor +//peak factor +Kp1=h2/rms1;//peak factor +mprintf("WAVEFORM 2\n"); +mprintf("average value=%d volts,rms value=%2.3f volt,formfactor=%1.2f ,peak factor=%1.2f\n",av,rms1,ff1,Kp1); +//for WAVEFORM 3 +//Average Value +Vm=1;//assuming mean voltage is 1 +a1=0.5*Vm*(%pi/3);//area of the triangle from 0 to (pi/3) +a2=Vm*(%pi/3);//area of the rectangle for period (pi/3) to (2*pi/3) +a3=0.5*Vm*(%pi/3);//area of the triangle from (2*pi/3) to pi +a=a1+a2+a3; +av2=(a/%pi);//average value +//rms value +area_under_squared_curv2=((Vm)^2*(%pi/3)*(5/3)) +rms2=sqrt(area_under_squared_curv2/(%pi));//rms value +//form factor +ff2=rms2/av2;//form factor +//peak factor +Kp2=Vm/rms2;//peak factor +mprintf("WAVEFORM 3\n"); +mprintf("average value=%1.3f volts,rms value=%1.3f volt,formfactor=%1.2f ,peak factor=%1.3f\n",av2,rms2,ff2,Kp2); +//for WAVEFORM 4 +//Average Value +T2=1;//let timeperiod=1 +av3=(100*(T2/2))/(T2/2);//average +//rms value +area_under_squared_curv3=((100)^2*(T2/2)); +rms3=sqrt((area_under_squared_curv3)/(T2/2));//rms value +//form factor +ff3=rms3/av3;//form factor +//peak factor +Kp3=100/rms3;//peak factor +mprintf("WAVEFORM 4\n"); +mprintf("average value=%d volts,rms value=%d volt,formfactor=%d ,peak factor=%d\n",av3,rms3,ff3,Kp3); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.10/ex4_10.sce b/1964/CH4/EX4.10/ex4_10.sce new file mode 100755 index 000000000..dfa71759d --- /dev/null +++ b/1964/CH4/EX4.10/ex4_10.sce @@ -0,0 +1,22 @@ +//Chapter-4, Example 4.10, Page 137 +//============================================================================= +clc +clear +//INPUT DATA +f=50;//freq in c/s +I=20;//current in A +Im=I/sqrt(2); +t=0.0025;//time in sec +//equation for instantaneous emf +i=(20*sqrt(2))*sin(2*%pi*f*t); +t1=0.0125; +i1=(20*sqrt(2))*sin(2*%pi*f*t1); +i2=14.14; +x=(i2)/(20*(sqrt(2))); +y=asin(x); +z=(2*%pi*50); +t=y/z; +mprintf("current when t is 00025 sec and 0.0125 sec are %d A and %d A respectively\n",i,i1); +mprintf("time when value of instantaneous cureent 14.14 is %g sec",t); +//note:in textbook for sub div (c) square root has not taken for maximum value computed +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.11/ex4_11.sce b/1964/CH4/EX4.11/ex4_11.sce new file mode 100755 index 000000000..fcc480314 --- /dev/null +++ b/1964/CH4/EX4.11/ex4_11.sce @@ -0,0 +1,12 @@ +//Chapter-4, Example 4.11, Page 137 +//============================================================================= +clc +clear +//INPUT DATA +I1=5;//current in A +I=10;//current in A +I2=I/sqrt(2); +//CALCULATIONS +i3=sqrt(((2*I1)^2)+(I2^2)); +mprintf("rms value of current is %1.2f A respectively\n",i3); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.12/ex4_12.sce b/1964/CH4/EX4.12/ex4_12.sce new file mode 100755 index 000000000..a11cd3052 --- /dev/null +++ b/1964/CH4/EX4.12/ex4_12.sce @@ -0,0 +1,29 @@ +//Chapter-4, Example 4.12, Page 138 +//============================================================================= +clc +clear +//CALCULATIONS +Im=141.4;//instantaneous current +f=50;//freq in hz +w=2*%pi*f;//angular freq in rad/sec +//instantaneous current equation is i=141.4*sin(w*t); +function f=myfun(t) + f=Im*sin(w*t(1)); +endfunction +t=[0.0025]; +g=numdiff(myfun,t) +mprintf("rate of change of current is %d A/sec \n",g); +function f1=myfun(t1) + f1=Im*sin(w*t1(1)); +endfunction +t1=[0.005]; +g1=numdiff(myfun,t1) +mprintf("rate of change of current is %d A/sec \n",g1); +function f2=myfun(t2) + f2=Im*sin(w*t2(1)); +endfunction +t2=[0.01]; +g2=numdiff(myfun,t2) +mprintf("rate of change of current is %d A/sec \n",g2); +//note:answer given in textbook for section c is wrong +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.13/ex4_13.sce b/1964/CH4/EX4.13/ex4_13.sce new file mode 100755 index 000000000..01d1c9d32 --- /dev/null +++ b/1964/CH4/EX4.13/ex4_13.sce @@ -0,0 +1,28 @@ +//Chapter-4, Example 4.13, Page 138 +//============================================================================= +clc +clear +//INPUT DATA +R=60;//resistance in ohms +Rf=50;//resistance in ohms +Rr=500;//resistance in ohms +V=120;//supply voltage in volts +f=50;//freq in hz +//CALCULATIONS +peak=V*sqrt(2);//peak value of applied voltage +peak1=peak/(R+Rf);//peak value of current in forward direction +peak2=peak/(R+Rr);//peak value of current in reverse direction +i=((2*peak1)-(2*peak2))/(2*%pi);//current in moving coil ammeter over the period 0 to 2*(%pi) +i1=((%pi/2)*((peak1)^2+(peak2)^2))/(2*(%pi));//mean current over the period 0 to 2*(%pi) +rms=sqrt(i1);//rms value in hot wire ammeter +mprintf("rms value in hot wire ammeter is %1.3f A\n",rms); +If=(peak1)/(sqrt(2));//rms value in forward direction +mprintf("rms value in forward direction is %1.2f A\n",If); +Ir=(peak2)/(sqrt(2));//rms value in reverse direction +mprintf("rms value in reverse direction is %1.2f A\n",Ir); +av=((R+Rf)*((If)^2)+(R+Rr)*((Ir)^2))/(2); +mprintf("average power dissipated is %2.2f W\n",av); +pf=((Rf)*((If)^2)+(Rr)*((Ir)^2))/(2); +mprintf("power dissipated in rectifier is %2.1f W\n",pf); +//=================================END OF PROGRAM============================== + diff --git a/1964/CH4/EX4.14/ex4_14.sce b/1964/CH4/EX4.14/ex4_14.sce new file mode 100755 index 000000000..f4f4257b8 --- /dev/null +++ b/1964/CH4/EX4.14/ex4_14.sce @@ -0,0 +1,15 @@ +//Chapter-4, Example 4.14, Page 144 +//============================================================================= +clc +clear +//given voltage applied is 100*sin(w*t) +//CALCULATIONS +R=10;//resisitance in ohms +//i=(100)*sin(w*t)/10=10*sin(w*t) +//instantaneous power=1000*(sin(w*t))^2 +E=(100)/sqrt(2);//average value of voltage in volts +I=(10)/sqrt(2);//average value of current in amps +P=E*I;//average power in Watts +mprintf("thus average power is %1.0f W",P); +//=================================END OF PROGRAM============================== + diff --git a/1964/CH4/EX4.15/ex4_15.sce b/1964/CH4/EX4.15/ex4_15.sce new file mode 100755 index 000000000..54d578fb6 --- /dev/null +++ b/1964/CH4/EX4.15/ex4_15.sce @@ -0,0 +1,14 @@ +//Chapter-4, Example 4.15, Page 144 +//============================================================================= +clc +clear +//given voltage applied is e=340*sin(314*t) +//given current applied is i=42.5*sin(314*t) +//CALCULATIONS +R=340/42.5;//resisitance in ohms +E=(340)/sqrt(2);//average value of voltage in volts +I=(42.5)/sqrt(2);//average value of current in amps +P=E*I;//average power in Watts +mprintf("thus average power is %1.0f W",P); +//=================================END OF PROGRAM============================== + diff --git a/1964/CH4/EX4.16/ex4_16.sce b/1964/CH4/EX4.16/ex4_16.sce new file mode 100755 index 000000000..6e9d48876 --- /dev/null +++ b/1964/CH4/EX4.16/ex4_16.sce @@ -0,0 +1,19 @@ +//Chapter-4, Example 4.16, Page 145 +//============================================================================= +clc +clear +//given voltage applied is e=100*sin(314*t) +//CALCULATIONS +E=100/sqrt(2); +w=314; +L=0.2;//inductannce in henry +// indefinitely integrating e and later dividing by L we get it as +//i=-1.592*cos(314*t);//instantaneous current +//instantaneous power=e*i=-79.6*sin(628t) +P=0;//average power=0 +Xl=w*L;//inductance in ohms +I=(E)/(Xl);//rms current +mprintf("inductive reactance and rms current is %2.1f ohms and %1.3f amps respectively",Xl,I); +//note:We cannot compute symbolic or indefinite integration in scilab.In order to verify your results use wxmaxima software. +//=================================END OF PROGRAM============================== + diff --git a/1964/CH4/EX4.17/ex4_17.sce b/1964/CH4/EX4.17/ex4_17.sce new file mode 100755 index 000000000..f780eeb37 --- /dev/null +++ b/1964/CH4/EX4.17/ex4_17.sce @@ -0,0 +1,23 @@ +//Chapter-4, Example 4.17, Page 145 +//============================================================================= +clc +clear +//CALCULATIONS +L=0.225;//inductance in henry +e=120;//voltage in volts +f=50;//frequency in c/s +Xl=(2*%pi*f*L);//inductive reactance in ohms +mprintf("Inductive reactance in ohms is %2.2f ohms\n",Xl); +L=0.2;//inductance in henry +Im=2.4;//peak value of current in A +//instantaneous voltage equation is e=(sqrt(2)*120*sin(314*t)) +// indefinitely integrating e and later dividing by L we get it as +//i=-2.4*cos(314t);//instantaneous current in A +I=Im/(sqrt(2));//in A +mprintf("Current is %1.3f A\n",I); +m=(e*sqrt(2)*Im)/2;//maximum power delivered in watts +mprintf("Maximum power delivered to inductor is %3.2f watts\n",m); +mprintf("average power is zero\n") +mprintf("equation for voltage and current are 169.68*sin(314*t) and -2.4*cos(314*t) respectively"); +//note:We cannot compute symbolic or indefinite integration in scilab.In order to verify your results use wxmaxima software. +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.18/ex4_18.sce b/1964/CH4/EX4.18/ex4_18.sce new file mode 100755 index 000000000..cc55e0354 --- /dev/null +++ b/1964/CH4/EX4.18/ex4_18.sce @@ -0,0 +1,20 @@ +//Chapter-4, Example 4.18, Page 146 +//============================================================================= +clc +clear +//CALCULATIONS +L=0.01;//inductance in henry +//equation of current is 10*cos(1500*t) +w=1500;//angular freq in rad/sec +Xl=(w*L);//inductive reactance in ohms +mprintf("inductive reactance is %1.1f ohms\n",Xl); +function f=myfun(t) + f=10*cos(w*t); +q=derivative(f); +endfunction//derivation yields e=-150*sin(1500*t) +mprintf("equation for voltage across is e=-150*sin(1500*t)") +X2=40;//given new inductance in ohms +f2=X2/(2*%pi*L);//freq in hz +mprintf("thus at freq %d hz inductance will be 40 ohms",f2) +//note:answer given for inductive reactance is wrong.Please check the calculations +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.19/ex4_19.sce b/1964/CH4/EX4.19/ex4_19.sce new file mode 100755 index 000000000..e6bf79327 --- /dev/null +++ b/1964/CH4/EX4.19/ex4_19.sce @@ -0,0 +1,17 @@ +//Chapter-4, Example 4.19, Page 146 +//============================================================================= +clc +clear +//CALCULATIONS +C=135;//capacitance in uF +E=150;//voltage in volts +f=50;//freq in c/s +Xc=1/(2*3.14*f*C*10^-6);//capacitive reactance in ohms +//equation for current is i=8.99*sin(314*t+(%pi/2))A +//instantaneous power is P=E*I*sin(2*w*t) +P=0;//average power +Im=8.99;//peak value of instantaneous current equation +I=(Im)/(sqrt(2));//rms current in amps +M=E*sqrt(2)*I*sqrt(2);//maximum power delivered in Watts +mprintf("thus capacitive reactance,Rms current and Maximum power delivered are %2.3f ohms ,%1.2f Amps,%1.0f Watts respectively",Xc,I,M); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.2/ex4_2.sce b/1964/CH4/EX4.2/ex4_2.sce new file mode 100755 index 000000000..f56678a48 --- /dev/null +++ b/1964/CH4/EX4.2/ex4_2.sce @@ -0,0 +1,31 @@ +//Chapter-4, Example 4.2, Page 130 +//============================================================================= +clc +clear +//CALCULATIONS +//for halfwave rectifier +Im=1;//assume peak value is 1 +//for (0 to pi) value is (Im*sin(theta)) for (pi to 2*pi) value is 0 +function y1=f1(x),y1=(Im^2)*(sin(x))^2,endfunction +a1=(intg(0,%pi,f1)); +a=(a1)/(2*%pi);//mean square value +rms=sqrt(a);//rms value +function y3=f3(x),y3=(Im)*(sin(x)),endfunction +a3=(intg(0,%pi,f3)); +av=a3/(2*(%pi));//average value +ff=rms/av;//form factor +pf=Im/rms;//peak factor +mprintf("for half wave rectifier\n"); +mprintf("form factor=%1.2f,peak factor=%d\n",ff,pf); +//for fullwave rectifier +function y4=f4(x),y4=(Im^2)*(sin(x))^2,endfunction +a4=(intg(0,%pi,f4)); +a4=a4/(%pi); +rms2=sqrt(a4);//rms value +function y5=f5(x),y5=(Im)*(sin(x)),endfunction +av2=(intg(0,%pi,f5))/(%pi);//average value +ff2=rms2/av2;//form factor +pf2=Im/rms2;//peak factor +mprintf("for full wave rectifier\n"); +mprintf("form factor=%1.2f,peak factor=%1.2f",ff2,pf2); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.20/ex4_20.sce b/1964/CH4/EX4.20/ex4_20.sce new file mode 100755 index 000000000..07604d82b --- /dev/null +++ b/1964/CH4/EX4.20/ex4_20.sce @@ -0,0 +1,19 @@ +//Chapter-4, Example 4.20, Page 147 +//============================================================================= +clc +clear +//CALCULATIONS +//given voltage eqn is v=100+(100*sqrt(2))*sin(314*t) volts +W=314;//freq in rad/sec +R=5;//resistance in ohms +X=12;//reactance in ohms +Z=R+((%i)*(X));//impedance in ohms +Idc=100/R;//dc current in A +Iac=(100)/(sqrt((R)^2+(X)^2));//rms value of ac component of current +Pt=(R*(Idc^2))+(R*(Iac^2));//total power in Watts +V1=sqrt((100)^2+(100)^2);//supplied voltage in Rms in volts +I1=sqrt((20)^2+(7.69)^2);//current in Rms in Amps +Z1=V1/I1;//circuit impedance in ohms +Pf=Pt/(V1*I1);//Power factor +mprintf("thus circuit impedance,Power expended and Power factors are %1.1f Ohms ,%1.0f W and %1.3f respectively",Z1,Pt,Pf); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.21/ex4_21.sce b/1964/CH4/EX4.21/ex4_21.sce new file mode 100755 index 000000000..9716cf6d5 --- /dev/null +++ b/1964/CH4/EX4.21/ex4_21.sce @@ -0,0 +1,29 @@ +//Chapter-4, Example 4.21, Page 147 +//============================================================================= +clc +clear + function [polar] = r2p(x,y)//function to convert rectangular to polar + polar = ones(1,2) + polar(1) = sqrt ((x ^2) +(y^2)) + polar(2) = atan (y/x) + polar(2) =(polar (2)*180)/%pi + endfunction + function [ rect ] = p2r(r,theta)//function to convert polar to rectangular + rect = ones(1 ,2) + theta =( theta *%pi) /180 + rect (1)=r* cos(theta) + rect (2)=r* sin(theta) + endfunction +//CALCULATIONS +I1=p2r(300,0); +disp(I1); +I2=p2r(350,30); +disp(I2); +I=I1+I2; +disp(I); +i3=r2p(I(1),I(2)) +disp(i3); +mprintf("Thus resultant current is 627.9 A and it leads 300 A by 16 degrees") +//note:here direct functions for converson are not available and hence we defined user defined functions for polar to rect and rect to polar conversions +//=================================END OF PROGRAM====================================================================================================== + diff --git a/1964/CH4/EX4.22/ex4_22.sce b/1964/CH4/EX4.22/ex4_22.sce new file mode 100755 index 000000000..2a14bd86f --- /dev/null +++ b/1964/CH4/EX4.22/ex4_22.sce @@ -0,0 +1,33 @@ +//Chapter-4, Example 4.22, Page 147 +//============================================================================= +clc +clear +funcprot(0) +function [polar] = r2p(x,y)//function to convert rectangular to polar + polar = ones(1,2) + polar(1) = sqrt ((x ^2) +(y^2)) + polar(2) = atan (y/x) + polar(2) =(polar (2)*180)/%pi + endfunction + function [ rect ] = p2r(r,theta)//function to convert polar to rectangular + rect = ones(1 ,2) + theta =( theta *%pi) /180 + rect (1)=r* cos(theta) + rect (2)=r* sin(theta) + endfunction +//v=230*sin(100*%pi*t) +//CALCULATIONS +R=100;//resistance in ohms +L=319;//inductance in mH +Xl=(100*%pi*L*10^-3);//inductive reactance in ohms +Z=R+((%i)*(Xl));//impedance in ohms +Z=r2p(R,Xl);//impedance in polar form +disp(Z); +Z1=p2r(Z(1),Z(2)); +disp(Z1); +//i=230/1.414*sin(100*%3.14*t-45)=1.626*sin(100*%3.14*t-45) +i=(1.626/(sqrt(2)));//rms current in A +P=(i)^2*R;//power taken by the coil in W +mprintf("power taken by the coil is %3.1f W",P); +//note:here direct functions for converson are not available and hence we defined user defined functions for polar to rect and rect to polar conversions +//=================================END OF PROGRAM======================================================================================================= diff --git a/1964/CH4/EX4.23/ex4_23.sce b/1964/CH4/EX4.23/ex4_23.sce new file mode 100755 index 000000000..f48d6f0f7 --- /dev/null +++ b/1964/CH4/EX4.23/ex4_23.sce @@ -0,0 +1,40 @@ +//Chapter-4, Example 4.23, Page 148 +//============================================================================= +clc +clear +function [polar] = r2p(x,y)//function to convert rectangular to polar + polar = ones(1,2) + polar(1) = sqrt ((x ^2) +(y^2)) + polar(2) = atan (y/x) + polar(2) =(polar (2)*180)/%pi + endfunction + function [ rect ] = p2r(r,theta)//function to convert polar to rectangular + rect = ones(1 ,2) + theta =( theta *%pi) /180 + rect (1)=r* cos(theta) + rect (2)=r* sin(theta) + endfunction +//e1=230*sin(w*t) +//e2=230*sin(w*t*%pi/6) +//CALCULATIONS +E1=p2r(230,0);//impedance in rectangular form +disp(E1); +E2=p2r(230,30); +disp(E2); +E=E1+E2; +E=E/sqrt(2); +E=r2p(E(1),E(2)); +disp(E) +Z=r2p(8,6); +disp(Z); +I1=E(1)/Z(1); +disp(I1) +theta=E(2)-Z(2); +disp(theta); +phi=cos(theta*%pi/180) +disp(phi) +P1=(E(1))*(I1)*(phi);//power supplied in Watts +mprintf("Thus Rms current and power supplied are %2.1f A and %f W respectively",I1,P1); +//note here power calculated my vary as we took many decimal values for calculation.Please check the calculations +//note:here direct functions for converson are not available and hence we defined user defined functions for polar to rect and rect to polar conversions +//=================================END OF PROGRAM======================================================================================================= diff --git a/1964/CH4/EX4.24/ex4_24.sce b/1964/CH4/EX4.24/ex4_24.sce new file mode 100755 index 000000000..72b8da676 --- /dev/null +++ b/1964/CH4/EX4.24/ex4_24.sce @@ -0,0 +1,15 @@ +//Chapter-4, Example 4.24, Page 148 +//============================================================================= +clc +clear +//CALCULATIONS +//e1=230*sin(100*%pi*t) +C=20*10^-6;//capacitance in F +//e2=230*sin(700*%pi*t) +Vm1=230;//peak voltage for e1 +Vm2=35;//peak voltage for e2 +I1=Vm1*(100*%pi*C)/(sqrt(2));//current due to component e1 +I2=Vm2*(700*%pi*C)/(sqrt(2));//current due to component e2 +mprintf("thus current due to component e1 and e2 are %1.2fA and %1.2fA respectively",I1,I2); +//=================================END OF PROGRAM====================================================================================================== + diff --git a/1964/CH4/EX4.25/ex4_25.sce b/1964/CH4/EX4.25/ex4_25.sce new file mode 100755 index 000000000..a4335968e --- /dev/null +++ b/1964/CH4/EX4.25/ex4_25.sce @@ -0,0 +1,62 @@ +//Chapter-4, Example 4.25, Page 149 +//============================================================================= +clc +clear +funcprot(0) +function [polar] = r2p(x,y) //function to convert rectangular to polar + polar = ones(1,2) + polar(1) = sqrt ((x ^2) +(y^2)) + polar(2) = atan (y/x) + polar(2) =(polar (2)*180)/%pi + endfunction + function [ rect ] = p2r(r,theta)//function to convert polar to rectangular + rect = ones(1 ,2) + theta =( theta *%pi) /180 + rect (1)=r* cos(theta) + rect (2)=r* sin(theta) + endfunction +//CALCULATIONS +//v=230*sin(314*t)+60*sin(942*t) +V=230;//voltage in volts +V1=60;//voltage of harmonic in volts +R=10;//resistance in ohms +L=0.3;//inductance in henry +C=100*10^-6;//capacitance in F +//Branch with Resistor (R) +I1m=V/R;//current in A +I1m=I1m/(sqrt(2));//rms current in A +I3m=V1/R;//current in A +I3m=I3m/(sqrt(2));//rms current in A +I=sqrt((I1m)^2+(I3m)^2);//rms current in A +Pr=((I)^2)*(R);//power in Watts +//Branch with inductor(L) +Z1=(10+((%i)*(314*0.03)));//impedance to fundamental component +M=sqrt((10)^2+(9.42)^2);//magnitude of Z1 in polar form +theta=atan(9.42/10)*(180/%pi);//angle of Z1 in polar form +I2m=V/M;//fundamental current in A +I2m=I2m/(sqrt(2));//rms current in A +I4m=V1/M;//third harmonic component of current +I4m=I4m/(sqrt(2));//rms current in A +I1=((I2m)^2+(I4m)^2);//total rms current in A +Pr1=(I1)*(R);//Power in Watts +//branch with capacitor +X1=1/(314*10^-4);//reactance to fundamental component in ohms +I5m=V/(X1);//current in A +I5m=I5m/(sqrt(2));//rms current in A +X2=1/(942*10^-4);//reactance to third harmonic component in ohms +I6m=V1/X2;//current in A +I6m=I6m/(sqrt(2));//rms current in A +I2=sqrt((I5m)^2+(I6m)^2);//total rms current in A +Pr2=0;//power in watts +T=Pr+Pr1+Pr2;//total power dissipated in W +//calculation of total current +Im=(p2r(16.26,0)+p2r(11.84,43.29)+p2r(5.1,90));//pol to rect +disp(Im);//fundamental component of current in A +Im1=(p2r(4.24,0)+p2r(3.09,-43.29)+p2r(4,90));//pol to rect +disp(Im1);//third harmonic component of current in A +T1=sqrt((Im(1))^2+(Im1(1))^2);//total rms current in A +V2=(sqrt((V)^2+(V1)^2))/sqrt(2);//voltage applied in rms +pf=T/((T1)*(V2));//power factor +mprintf("thus total current ,power input and power factor are %2.2f A ,%f W,%1.2f respectively",T1,T,pf); +//=================================END OF PROGRAM====================================================================================================== + diff --git a/1964/CH4/EX4.3/ex4_3.sce b/1964/CH4/EX4.3/ex4_3.sce new file mode 100755 index 000000000..4bd650a87 --- /dev/null +++ b/1964/CH4/EX4.3/ex4_3.sce @@ -0,0 +1,15 @@ +//Chapter-4, Example 4.3, Page 132 +//============================================================================= +clc +clear +//CALCULATIONS +v1=0;v2=5;v3=10;v4=20;v5=50;v6=60;v7=50;v8=20;v9=10;v10=5;v11=0;v12=-5;v13=-10; +Vm=60; +V=((v1^2)+(v2^2)+(v3^2)+(v4^2)+(v5^2)+(v6^2)+(v7^2)+(v8^2)+(v9^2)+(v10^2)) +V=sqrt(V/10); +Vav=(v1+v2+v3+v4+v5+v6+v7+v8+v9+v10)/10;//average value +Kf=V/Vav;//form factor +Kp=Vm/V;//peak factor +rms2=Vm/(sqrt(2));//rms voltage value with the same peak value +mprintf("rms1 =%2.2f volts\n average value=%d volts \n form factor= %2.2f \n peak factor= %1.3f \n rms2 value is %2.2f volts",V,Vav,Kf,Kp,rms2); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.4/ex4_4.sce b/1964/CH4/EX4.4/ex4_4.sce new file mode 100755 index 000000000..4a41254bf --- /dev/null +++ b/1964/CH4/EX4.4/ex4_4.sce @@ -0,0 +1,11 @@ +//Chapter-4, Example 4.4, Page 133 +//============================================================================= +clc +clear +//CALCULATIONS +f=60; +Im=120; +i=96; +t=asin(i/Im)/(2*%pi*60); +mprintf("time is %1.5f sec",t) +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.5/ex4_5.sce b/1964/CH4/EX4.5/ex4_5.sce new file mode 100755 index 000000000..ae63f801c --- /dev/null +++ b/1964/CH4/EX4.5/ex4_5.sce @@ -0,0 +1,29 @@ +//Chapter-4, Example 4.5, Page 133 +//============================================================================= +clc +clear +funcprot(0) +//CALCULATIONS +Im=100;//current in amps +f=50;//freq in hz +w=2*%pi*50;//angular freq in rad/sec +//at t=0.0025 +function f=myfun(t) + f=Im*sin(w*t(1)); +endfunction +t=[0.0025]; +g=numdiff(myfun,t)//by using numdiff function the calculated value will defer to observed value by 15 +//at t= 0.005 +function f1=myfun(t1) + f1=Im*sin(w*t1(1)); +endfunction +t1=[0.005]; +g1=numdiff(myfun,t1); +//at t= 0.01 +function f2=myfun(t2); + f2=Im*sin(w*t2(1)); +endfunction +t2=[0.01]; +g2=numdiff(myfun,t2); +mprintf("rate of change of current at t=0.025,t=0.005,t=0.01 sec are %d A/sec %d A/sec %d A/sec respectively",g,g1,g2); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.6/ex4_6.sce b/1964/CH4/EX4.6/ex4_6.sce new file mode 100755 index 000000000..ae28b3d03 --- /dev/null +++ b/1964/CH4/EX4.6/ex4_6.sce @@ -0,0 +1,25 @@ +//Chapter-4, Example 4.6, Page 134 +//============================================================================= +clc +clear +//INPUT DATA +N=200;//no of turns +a=250;//area of cross-section in sq.cm +Bm=0.5;//magnetic field strength in Tesla +speed=1200;//in r.p.m +//CALCULATIONS +w=2*%pi*(speed/60);//angular freq in rad/sec +phi=Bm*a*10^-4;//area taken in sq.m +Em=N*w*phi;//maximum value of induced Emf +mprintf("maximum value of induced Emf is %d volts\n",Em); +//equation for instantaneous induced emf is e=Em*sin(w*t) +//when plane of coil is parallel to field ,theta is 90 degrees +e1=Em*sin(%pi/2);//converted degrees to radians +mprintf("when plane of coil is parallel to field, induced Emf is %d volts\n",e1); +//when plane of coil is parallel to field ,theta is 0 degrees +e2=Em*sin(0); +mprintf("when plane of coil is perpendicular to field, induced Emf is %d volts\n",e2); +//when plane of coli is inclined at 45 degrees to the field +e3=Em*sin(%pi/4); +mprintf("when plane of coil is at 45 degrees to field, induced Emf is %d volts\n",e3); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.7/ex4_7.sce b/1964/CH4/EX4.7/ex4_7.sce new file mode 100755 index 000000000..8067c2d25 --- /dev/null +++ b/1964/CH4/EX4.7/ex4_7.sce @@ -0,0 +1,14 @@ +//Chapter-4, Example 4.7, Page 135 +//============================================================================= +clc +clear +//INPUT DATA +I=10;//direct current in A +Im=10;//peak value of sinusoidal current in A +//CALCULATIONS +function y1=f1(x),y1=(I+Im*sin(x))^2,endfunction +a1=(intg(0,2*%pi,f1)); +a1=a1/(2*%pi);//mean square value in A +rms=sqrt(a1);//rms value in A +mprintf("rms value is %2.2f A",rms); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.8/ex4_8.sce b/1964/CH4/EX4.8/ex4_8.sce new file mode 100755 index 000000000..2d5263e50 --- /dev/null +++ b/1964/CH4/EX4.8/ex4_8.sce @@ -0,0 +1,15 @@ +//Chapter-4, Example 4.8, Page 136 +//============================================================================= +clc +clear +//let the current peak value of sinusoidal and rectangular waves are Im. +//CALCULATIONS +Im=1;//let im current value be 1(just for calculation purposes) +rms1=sqrt(((Im)^2*%pi)/(%pi));//rms current value of rectangular wave +function y1=f1(x),y1=(Im^2)*(sin(x))^2,endfunction +a1=(intg(0,%pi,f1)); +a1=a1/(%pi);//mean square value in A +rms=sqrt(a1);//rms value in A +z=((rms)^2/(rms1)^2);//relative heating effects +mprintf("relative heating effects is %1.1f",z); +//=================================END OF PROGRAM============================== diff --git a/1964/CH4/EX4.9/ex4_9.sce b/1964/CH4/EX4.9/ex4_9.sce new file mode 100755 index 000000000..efc93d898 --- /dev/null +++ b/1964/CH4/EX4.9/ex4_9.sce @@ -0,0 +1,19 @@ +//Chapter-4, Example 4.9, Page 137 +//============================================================================= +clc +clear +//CALCULATIONS +//for subdivision a +funcprot(0); +max=40; +rms=max/sqrt(2); +mprintf("max and rms values are %d units and %2.2f units respectively\n",max,rms); +//for subdivision b +//max=A+B +//rms=(A+B)/sqrt(2) +//for subdivision c +max1=sqrt(((10)^2)+((17.3)^2)); +rms1=max1/sqrt(2); +mprintf("max and rms values are %2.2f units and %2.2f units respectively",max1,rms1); +//note:in textbook for sub div (c) square root has not taken for maximum value computed +//=================================END OF PROGRAM============================== -- cgit