From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1910/CH1/EX1.1/Chapter11.sce | 17 +++++++++++++++ 1910/CH1/EX1.10/Chapter110.sce | 49 ++++++++++++++++++++++++++++++++++++++++++ 1910/CH1/EX1.11/Chapter111.sce | 27 +++++++++++++++++++++++ 1910/CH1/EX1.2/Chapter12.sce | 20 +++++++++++++++++ 1910/CH1/EX1.4/Chapter14.sce | 16 ++++++++++++++ 1910/CH1/EX1.5/Chapter15.sce | 16 ++++++++++++++ 1910/CH1/EX1.6/Chapter16.sce | 39 +++++++++++++++++++++++++++++++++ 1910/CH1/EX1.7/Chapter17.sce | 17 +++++++++++++++ 1910/CH1/EX1.8/Chapter18.sce | 15 +++++++++++++ 1910/CH1/EX1.9/Chapter19.sce | 29 +++++++++++++++++++++++++ 10 files changed, 245 insertions(+) create mode 100755 1910/CH1/EX1.1/Chapter11.sce create mode 100755 1910/CH1/EX1.10/Chapter110.sce create mode 100755 1910/CH1/EX1.11/Chapter111.sce create mode 100755 1910/CH1/EX1.2/Chapter12.sce create mode 100755 1910/CH1/EX1.4/Chapter14.sce create mode 100755 1910/CH1/EX1.5/Chapter15.sce create mode 100755 1910/CH1/EX1.6/Chapter16.sce create mode 100755 1910/CH1/EX1.7/Chapter17.sce create mode 100755 1910/CH1/EX1.8/Chapter18.sce create mode 100755 1910/CH1/EX1.9/Chapter19.sce (limited to '1910/CH1') diff --git a/1910/CH1/EX1.1/Chapter11.sce b/1910/CH1/EX1.1/Chapter11.sce new file mode 100755 index 000000000..85e657cd2 --- /dev/null +++ b/1910/CH1/EX1.1/Chapter11.sce @@ -0,0 +1,17 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 1") +//The temprature of two faces of the slabs are T1=40°C & T2=20°C +//The thickness of the slab(L) is 80mm or .08m +//The thermal conductivity(k)of the material is .20 W/(m*K) +T1=40; +T2=20; +L=.08; +k=.20; +//The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L +disp ("The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L in W/m^2 ") +q=k*(T1-T2)/L diff --git a/1910/CH1/EX1.10/Chapter110.sce b/1910/CH1/EX1.10/Chapter110.sce new file mode 100755 index 000000000..ff7a2511e --- /dev/null +++ b/1910/CH1/EX1.10/Chapter110.sce @@ -0,0 +1,49 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 10") +//The spacecraft panel has thickness(L)=.01 m +//The spacecraft has inner temprature (Ti)=298 K +//The spacecraft has outer temprature(T2) +//The panel is exposed to deep space where temprature(To)= 0K +//The material has Thermal conductivity(k)= 5.0 W/(m*K) +//The emissivity(emi)=0.8 +//The inner surface of the panel is exposed to airflow resulting in an average heat transfer coefficient(hbri)=70 W/(m^2*K) +L=.01; +Ti=298; +To=0; +k=5; +emi=0.8; +hbri=70; +//The stefan Boltzman constant(sigma)= 5.67*10^-8 W/(m^2/K^4) +sigma=5.67*10^-8; +//Heat transfer from the outer surface takes place only by radiation is given by Q/A=emi*sigma*(T2^4-T0^4)in W/m^2=F1 +//heat transfer from the outer surface can also be written as Q/A=(Ti-To)/((1/hbri)+(L/k)+(1/hr))=F2 +//Radiation heat transfer coefficient(hr) is defined as Q/A=hr(T2-To) +//so hr=4.536*10^-8*T2^3 +disp("Heat transfer from the outer surface takes place only by radiation is given by Q/A=F1=emi*sigma*(T2^4-T0^4)in W/m^2 for different values of tempratures in K") +disp("heat transfer from the outer surface can also be written as Q/A=F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) in W/m^2 at different tempratures in K" ) +disp("The values of temprature that are considered are <298 K") +for (i=285:292) + T2=i,hr=4.536*10^-8*T2^3; F1=emi*sigma*(T2^4-To^4),F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) +end +if F1==F2 then T2=i + else T2=292.5,hr=4.536*10^-8*T2^3; F1=emi*sigma*(T2^4-To^4),F2=(Ti-To)/((1/hbri)+(L/k)+(1/hr)) +end +disp("Satisfactory solutions for Temprature in K is") +disp(Temprature = T2) +disp("Approximate Rate of Heat Transfer in W/m^2 is") +disp(332) + + + + + + + + + + diff --git a/1910/CH1/EX1.11/Chapter111.sce b/1910/CH1/EX1.11/Chapter111.sce new file mode 100755 index 000000000..f26bc4e83 --- /dev/null +++ b/1910/CH1/EX1.11/Chapter111.sce @@ -0,0 +1,27 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 11") +//The horizontal steel pipe has outer diameter(D)=80 mm or.08 m +//The pipe is maintained at a temprature(T1)=60°C where the air and wall temprature(T2)=20 °C +//The average free convective heat transfer coefficient(hbr)=6.5 W/(m^2/K) b/w the outer surface of the pipe and air +D=.08; +T1=60; +T2=20; +hbr=6.5; +//Length(L=1) since per unit length is considered +L=1; +//The surface area of pipe is given by A=(%pi*D*L) +A=(%pi*D*L); +//The surface emissivity(emi) of steel = 0.8 +//The stefan -Boltzman constant(sigma)= 5.7*10^-8 W/(m^2*K^4) +sigma=5.67*10^-8; +emi=.8; +//The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1^4-T2^4) +disp("The total heat loss by The pipe per unit length is given by Q/L=hbr*A*(T1-T2)+sigma*emi*A*(T1^4-T2^4) in W/m") +//Let Q/L=F +F=hbr*A*((T1+273.15)-(T2+273.15))+sigma*emi*A*((T1+273.15)^4-(T2+273.15)^4) + diff --git a/1910/CH1/EX1.2/Chapter12.sce b/1910/CH1/EX1.2/Chapter12.sce new file mode 100755 index 000000000..6f7eef26e --- /dev/null +++ b/1910/CH1/EX1.2/Chapter12.sce @@ -0,0 +1,20 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 2") +//The thermal conductivity(km)of masonry wall is .8 W/(mK) +//The thermal conductivity(kc)of composite wall is .2 W/(mK) +//The thickness of composite wall(Lc) is 100 mm or .1 m +km=.8; +kc=.2; +Lc=.1; +//The thickness of masonry wall(Lm) is to be found. +//The steady state heat flow(qm)through masonry wall is km(T1-T2)/L +// The steady state heat flow(qc)through composite wall is kc(T1-T2)/L +//As the steady rate of heat flow through masonry wall is 80% that through composite wall and both the wall have same surface area and same temp. difference so qm/qc=0.8=(km/kc)*(Lc/Lm) +//The thickness of masonry wall is Lm. +disp ("The thickness of masonry wall is Lm in m") +Lm=(km/kc)*(Lc/(0.8)) diff --git a/1910/CH1/EX1.4/Chapter14.sce b/1910/CH1/EX1.4/Chapter14.sce new file mode 100755 index 000000000..ababfe72d --- /dev/null +++ b/1910/CH1/EX1.4/Chapter14.sce @@ -0,0 +1,16 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 4") +//The average forced convective heat transfer coefficient(hbr) is 200 W/( m^2 °C) +//The fluid temprature(Tinf) upstream of the cold surface is 100°C +//The surface temprature(Ts) is 20°C +hbr=200; +Tinf=100; +Ts=20; +//The rate of heat transfer per unit area is q +disp ("The rate of heat transfer per unit area q=hbr*(Tinf-Ts) in W/m^2") +q=hbr*(Tinf-Ts) diff --git a/1910/CH1/EX1.5/Chapter15.sce b/1910/CH1/EX1.5/Chapter15.sce new file mode 100755 index 000000000..9e4910a43 --- /dev/null +++ b/1910/CH1/EX1.5/Chapter15.sce @@ -0,0 +1,16 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 5") +//The average heat transfer coefficient(hbr) is 800 W/(m^2°C) +//The surface temprature of heat exchanger is 75°C and air temprature is 25°C so deltaT=(75-25) +//The amount of heat exchanged(Q) is 20 MJ/h +//The heat exchanger surface area(A) is given by A=Q/(hbr*∆T) +hbr=800; +deltaT=(75-25); +Q=20; +disp("The heat exchanger surface area(A)in m^2 required for 20 MJ/h of heating is ") +A = (Q*10^6)/(3600*hbr*deltaT) diff --git a/1910/CH1/EX1.6/Chapter16.sce b/1910/CH1/EX1.6/Chapter16.sce new file mode 100755 index 000000000..953c5daaf --- /dev/null +++ b/1910/CH1/EX1.6/Chapter16.sce @@ -0,0 +1,39 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 6") +//The temprature of the plate(Ts) is 225°C +//The ambient temprature (Tinf) is 25°C +//The change in plate temprature with time is dT/dt=-.02K/s +//The plate area (A)=.1m^2 , mass(m)= 4Kg and specific heat(cp)=2.8KJ/(Kg*K) +//The average free convective heat coefficient(hbr) is to be found +Ts=225; +Tinf=25; +//|dT/dt|=0.2,because it is modulus function and it converts negative values to positive value. +//Let |dT/dt|=X +X=0.02; +A=.1; +m=4; +cp=2.8; +disp("The rate of heat transfer from the plate is given by Q=hbr*A*(Ts-Tinf)") +disp("The rate of heat transfer can also be written in the form of Q=m*cp*|dT/dt| from an energy balance.") +disp("Equating the above two equations we get hbr=(m*cp*|dT/dt|)/(A*(Ts-Tinf)) in W/(m^2°C)") +hbr=(m*cp*10^3*X)/(A*(Ts-Tinf)) + + + + + + + + + + + + + + + diff --git a/1910/CH1/EX1.7/Chapter17.sce b/1910/CH1/EX1.7/Chapter17.sce new file mode 100755 index 000000000..9c5862730 --- /dev/null +++ b/1910/CH1/EX1.7/Chapter17.sce @@ -0,0 +1,17 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 7") +//The temprature(T) of brick wall after sunset is 50°C +//The emissity value(emi)=0.9 +//The radiant heat flux per square meter =E/A Where E is radiant heat energy and A is area of brick wall. +//The stefan-Boltzman constant(sigma)=5.6697*10^-8 W/(m^2*K^4). +T=50; +emi=.9; +sigma=5.6697*10^-8; +disp("The heat flux per square meter is given by E/A=emi*sigma*T^4 in W/m^2") +//Let E/A=F +F=emi*sigma*(T+273.15)^4 diff --git a/1910/CH1/EX1.8/Chapter18.sce b/1910/CH1/EX1.8/Chapter18.sce new file mode 100755 index 000000000..5c4c7db64 --- /dev/null +++ b/1910/CH1/EX1.8/Chapter18.sce @@ -0,0 +1,15 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 8") +//The temprature(T) of asphalt pavement = 50°C +//The stefan-Boltzman constant(sigma)=5.6697*10^-8 W/(m^2*K^4). +T=50; +sigma=5.6697*10^-8; +//The emitted radiant energy per unit surface area is given by (Eb/A)=sigma*T^4 +disp ("The emitted radiant energy per unit surface area is given by Eb/A=sigma*T^4 in W/m^2") +//Let Eb/A=F +F=sigma*(50+273.15)^4 diff --git a/1910/CH1/EX1.9/Chapter19.sce b/1910/CH1/EX1.9/Chapter19.sce new file mode 100755 index 000000000..761767c11 --- /dev/null +++ b/1910/CH1/EX1.9/Chapter19.sce @@ -0,0 +1,29 @@ +// Display mode +mode(0); +// Display warning for floating point exception +ieee(1); +clear; +clc; +disp("Introduction to heat transfer by S.K.Som, Chapter 1, Example 9") +//The Thickness(L) of wall= 150 mm or 0.15 m. +//The wall on one side is exposed to air at temprature(Ta)= 60°C and on the other side to air at temprature(Tb) = 20°C +//The average convective heat transfer coefficients are hbr1=40 W/(m^2°C) on the 60°C and hbr2= 10 W/(m^2°C) on 20°C side. +//The thermal conductivity(k)=.8 W/(m°C) +L=0.15; +Ta=60; +Tb=20; +hbr1=40; +hbr2=10; +k=0.8; +//Area(A=1 m^2 )since unit surface area is required. +A=1; +//The rate of heat transfer per unit surface area of wall is given by (Q/A)=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A)) +disp("The rate of heat transfer per unit surface area of wall is given by Q/A=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A))in W/m^2") +//Let Q/A=F +F=(Ta-Tb)/((1/hbr1*A)+(L/(k*A))+(1/hbr2*A)) +//The surface tempratures of wall on 60°C side is T1 and on 20°C side is T2 +disp("The surface tempratures of wall on 60°C side is T1 =Ta-(Q/(A*hbr1)) in °C") +T1 =Ta-(F/hbr1) +disp("The surface tempratures of wall on 20°C side is T2 =Tb+(Q/(A*hbr2)) in °C") +T2 =Tb+(F/hbr2) + -- cgit