From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1892/CH2/EX2.1/Example2_1.sce | 58 +++++++++++++++++++++++++++++++++++++++++++ 1892/CH2/EX2.2/Example2_2.sce | 40 +++++++++++++++++++++++++++++ 1892/CH2/EX2.3/Example2_3.sce | 22 ++++++++++++++++ 1892/CH2/EX2.4/Example2_4.sce | 21 ++++++++++++++++ 1892/CH2/EX2.5/Example2_5.sce | 33 ++++++++++++++++++++++++ 5 files changed, 174 insertions(+) create mode 100755 1892/CH2/EX2.1/Example2_1.sce create mode 100755 1892/CH2/EX2.2/Example2_2.sce create mode 100755 1892/CH2/EX2.3/Example2_3.sce create mode 100755 1892/CH2/EX2.4/Example2_4.sce create mode 100755 1892/CH2/EX2.5/Example2_5.sce (limited to '1892/CH2') diff --git a/1892/CH2/EX2.1/Example2_1.sce b/1892/CH2/EX2.1/Example2_1.sce new file mode 100755 index 000000000..f0150cb29 --- /dev/null +++ b/1892/CH2/EX2.1/Example2_1.sce @@ -0,0 +1,58 @@ +// Example 2.1 + +clear; clc; close; +format('v',6); + +// Given data +Is=220;//in Ampere +//For no load +Vo=220;//in volt +Io=6;//in Ampere +wo=350;//in watt + +//From locked rotor test +Vsc=125;//in volt +Isc=15;//in Ampere +Wsc=580;//in watt +R1=1.5*1.2;//in Ω + +//Calculations +Zeq=Vsc/Isc;//in Ω +Req=Wsc/Isc^2;//in Ω +Xeq=sqrt(Zeq^2-Req^2);//in Ω +R1=1.5*1.2;//1.5 times more +R2=Req-R1;//in Ω +//assume X1=X2; Xeq=X1+X2=2*X2 +X2=Xeq/2;//in Ω +X1=X2;//in Ω +r2=R2/2;//in Ω +x2=X2/2;//in Ω + +cos_fio=wo/(Vo*Io);//unitless +fi_o=acosd(cos_fio);//in degree +Io=Io*expm(%i*-fi_o*%pi/180);//in Ampere(polar form) +VAB=Vo-Io*[R1+r2/2+%i*(X1+X2/2)];//in volt +Xo=abs(VAB)/abs(Io);//in ohm +Xeq=2*Xo;//in ohm +S=5/100;//slip +Zf=Xo*expm(%i*%pi/2)*(r2/S+%i*X2/2)/(r2/S+%i*(X2/2+Xo));//in ohm +Z1=R1+%i*X1;//in ohm +Z2=6.4819+%i*3.416;//in ohm +Zeq=Z1+Z2+Zf;//in ohm +I1=Vo/Zeq;//in Ampere +PF=cos(atan(imag(I1),real(I1)));//lagging Power factor +disp(PF,"Power factor(lagging) : "); +Vf=I1*Zf;//in volt +I2f=Vf/(r2/S-%i*X2/2);//in Ampere +Zb=Zf;//in ohm +Vb=I1*Zb;//in Volt +I2b=Vb/(r2/(2-S)+%i*X2);//in Ampere +Pf=abs(I2f)^2*r2/S;//in watts +Pb=abs(I2b)^2*r2/(2-S);//in watts +Pm=(1-S)*(Pf-Pb);//in watts +Wo=350;//in watts +Pout=Pm-Wo;//in watts +Pin=Vo*abs(I1)*PF;//in watts +Eff=Pout/Pin*100;//in % +disp(Eff,"Efficiency in % : "); +//Answer in the book is wrong. Lots of mistake in the solution while calculating Zf. diff --git a/1892/CH2/EX2.2/Example2_2.sce b/1892/CH2/EX2.2/Example2_2.sce new file mode 100755 index 000000000..bd2baedb5 --- /dev/null +++ b/1892/CH2/EX2.2/Example2_2.sce @@ -0,0 +1,40 @@ +// Example 2.2 + +clear; clc; close; +format('v',7); + +// Given data +V1=110;//in volt +Z1=2+%i*3;//in ohm +Zeq_rotor=2+%i*3;//in ohm +Xo=50;//in ohm(Magnetising impedence) +Losses=25;//in watt(friction & voltage loss) +S=5/100;//slip + +//Calculations +R1=real(Z1);//in Ω +X1=imag(Z1);//in Ω +R2=real(Zeq_rotor);//in Ω +X2=imag(Zeq_rotor);//in Ω +r2=R2/2;//in Ω +x2=X2/2;//in Ω +xo=Xo/2;//in ohm +Zf=%i*xo*(r2/S+%i*x2)/(r2/S+%i*(xo+x2));//in ohm +Zb=%i*xo*(r2/(2-S)+%i*x2)/(r2/(2-S)+%i*(xo+x2));//in ohm +Zeq=Z1+Zf+Zb;//in ohm +I1=V1/Zeq;//in Ampere +InputCurrent=abs(I1);//in Ampere +disp(InputCurrent,"Input current in Ampere : "); +PF=cos(atan(imag(I1),real(I1))); +disp(PF,"Power factor(lagging) : "); +Vf=I1*Zf;//in volt +I2f=Vf/(r2/S+%i*x2);//in Ampere +Vb=I1*Zb;//in Volt +I2b=Vb/(r2/(2-S)+%i*x2);//in Ampere +Pf=abs(I2f)^2*r2/S;//in watts +Pb=13.88;//in watts +Pm=(1-S)*(Pf-Pb);//in watts +Pout=Pm-Losses;//in watts +Pin=V1*abs(I1)*PF;//in watts +Eff=Pout/Pin*100;//in % +disp(Eff,"Efficiency in % : "); diff --git a/1892/CH2/EX2.3/Example2_3.sce b/1892/CH2/EX2.3/Example2_3.sce new file mode 100755 index 000000000..981cdca28 --- /dev/null +++ b/1892/CH2/EX2.3/Example2_3.sce @@ -0,0 +1,22 @@ +// Example 2.3 + +clear; clc; close; +format('v',7); + +// Given data +Pout=250;//in watt +V1=230;//in volt +f=50;//in Hz +Zm=4.5+%i*3.7;//in ohm +Za=9.5+%i*3.5;//in ohm + +//Calculations +//Za=9.5+%i*3.5-%i*Xc;//in ohm(Xc assumed to be connected in auxiliary winding) +fi_a=90-atand(imag(Zm),real(Zm));//in degree +Ra=real(Za);//in ohm +Xa=imag(Za);//in ohm +X=tand(fi_a)*Ra;//in ohm +Xc=X+Xa;//in ohm +C=1/2/%pi/f/Xc;//in Farad +disp(C*10^6,"Value of capacitance in micro farad : "); +//Note : In the book, instead of Capacitance which is asked, Torque is calculated even not asked in question and not given the sufficient data to calculate it. diff --git a/1892/CH2/EX2.4/Example2_4.sce b/1892/CH2/EX2.4/Example2_4.sce new file mode 100755 index 000000000..201023afa --- /dev/null +++ b/1892/CH2/EX2.4/Example2_4.sce @@ -0,0 +1,21 @@ +// Example 2.4 + +clear; clc; close; +format('v',7); + +// Given data +f=50;//in Hz +Z1m=3+%i*2.7;//in ohm +Z1a=7+%i*3;//in ohm +alfa=90;//in degree + +//Calculations +//Z1a=7+%i*3-%i*Xc;//in ohm(Xc assumed to be connected in auxiliary winding) +fi_a=90-atand(imag(Z1m),real(Z1m)) +R1a=real(Z1a);//in ohm +X1a=imag(Z1a);//in ohm +X=tand(fi_a)*R1a;//in ohm +Xc=X+X1a;//in ohm +C=1/2/%pi/f/Xc;//in Farad +disp(C*10^6,"Value of capacitance in micro farad : "); +//Note : In the book, Torque is calculated even not asked in question and not given the sufficient data to calculate it. diff --git a/1892/CH2/EX2.5/Example2_5.sce b/1892/CH2/EX2.5/Example2_5.sce new file mode 100755 index 000000000..bcdc3fe20 --- /dev/null +++ b/1892/CH2/EX2.5/Example2_5.sce @@ -0,0 +1,33 @@ +// Example 2.5 + +clear; clc; close; +format('v',7); + +// Given data +V1=230;//in volt +f=50;//in Hz +Vm=100;//in volt +Im=2;//in Ampere +Wm=40;//in watts +Va=80;//in volt +Ia=1;//in Ampere +Wa=50;//in watts + +//Calculations +Z1em=Vm/Im;//in ohm +R1em=Wm/Im^2;//in ohm +X1em=sqrt(Z1em^2-R1em^2);//in ohm +R1m=R1em/2;//in ohm +X1m=X1em/2;//in ohm +fi_m=atand(X1m/R1m);//in degree + +Z1ea=Va/Ia;//in ohm +R1ea=Wa/Ia^2;//in ohm +X1ea=sqrt(Z1ea^2-R1ea^2);//in ohm +Ra=R1ea-R1m;//in ohm +Xa=X1ea-X1m;//in ohm +fi_a=90-fi_m;//in degree +//after connecting capacitor +Xc=Xa-tand(-fi_a)*Ra +C=1/2/%pi/f/Xc;//in Farad +disp(C*10^6,"Value of capacitance in micro farad : "); -- cgit