From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1847/CH2/EX2.1/Ch02Ex1.sce | 11 +++++++++++ 1847/CH2/EX2.10/Ch02Ex10.sce | 11 +++++++++++ 1847/CH2/EX2.11/Ch02Ex11.sce | 15 +++++++++++++++ 1847/CH2/EX2.12/Ch02Ex12.sce | 13 +++++++++++++ 1847/CH2/EX2.13/Ch02Ex13.sce | 12 ++++++++++++ 1847/CH2/EX2.14/Ch02Ex14.sce | 13 +++++++++++++ 1847/CH2/EX2.15/Ch02Ex15.sce | 13 +++++++++++++ 1847/CH2/EX2.16/Ch02Ex16.sce | 15 +++++++++++++++ 1847/CH2/EX2.17/Ch02Ex17.sce | 16 ++++++++++++++++ 1847/CH2/EX2.18/Ch02Ex18.sce | 16 ++++++++++++++++ 1847/CH2/EX2.19/Ch02Ex19.sce | 13 +++++++++++++ 1847/CH2/EX2.2/Ch02Ex2.sce | 10 ++++++++++ 1847/CH2/EX2.20/Ch02Ex20.sce | 17 +++++++++++++++++ 1847/CH2/EX2.21/Ch02Ex21.sce | 11 +++++++++++ 1847/CH2/EX2.22/Ch02Ex22.sce | 12 ++++++++++++ 1847/CH2/EX2.23/Ch02Ex23.sce | 12 ++++++++++++ 1847/CH2/EX2.24/Ch02Ex24.sce | 12 ++++++++++++ 1847/CH2/EX2.25/Ch02Ex25.sce | 10 ++++++++++ 1847/CH2/EX2.26/Ch02Ex26.sce | 12 ++++++++++++ 1847/CH2/EX2.27/Ch02Ex27.sce | 12 ++++++++++++ 1847/CH2/EX2.28/Ch02Ex28.sce | 14 ++++++++++++++ 1847/CH2/EX2.29/Ch02Ex29.sce | 12 ++++++++++++ 1847/CH2/EX2.3/Ch02Ex3.sce | 15 +++++++++++++++ 1847/CH2/EX2.30/Ch02Ex30.sce | 13 +++++++++++++ 1847/CH2/EX2.31/Ch02Ex31.sce | 19 +++++++++++++++++++ 1847/CH2/EX2.32/Ch02Ex32.sce | 13 +++++++++++++ 1847/CH2/EX2.33/Ch02Ex33.sce | 14 ++++++++++++++ 1847/CH2/EX2.34/Ch02Ex34.sce | 19 +++++++++++++++++++ 1847/CH2/EX2.35/Ch02Ex35.sce | 16 ++++++++++++++++ 1847/CH2/EX2.36/Ch02Ex36.sce | 20 ++++++++++++++++++++ 1847/CH2/EX2.37/Ch02Ex37.sce | 14 ++++++++++++++ 1847/CH2/EX2.38/Ch02Ex38.sce | 19 +++++++++++++++++++ 1847/CH2/EX2.39/Ch02Ex39.sce | 19 +++++++++++++++++++ 1847/CH2/EX2.4/Ch02Ex4.sce | 11 +++++++++++ 1847/CH2/EX2.40/Ch02Ex40.sce | 14 ++++++++++++++ 1847/CH2/EX2.41/Ch02Ex41.sce | 16 ++++++++++++++++ 1847/CH2/EX2.42/Ch02Ex42.sce | 22 ++++++++++++++++++++++ 1847/CH2/EX2.43/Ch02Ex43.sce | 18 ++++++++++++++++++ 1847/CH2/EX2.44/Ch02Ex44.sce | 16 ++++++++++++++++ 1847/CH2/EX2.46/Ch02Ex46.sce | 16 ++++++++++++++++ 1847/CH2/EX2.47/Ch02Ex47.sce | 14 ++++++++++++++ 1847/CH2/EX2.48/Ch02Ex48.sce | 12 ++++++++++++ 1847/CH2/EX2.49/Ch02Ex49.sce | 11 +++++++++++ 1847/CH2/EX2.5/Ch02Ex5.sce | 15 +++++++++++++++ 1847/CH2/EX2.50/Ch02Ex50.sce | 11 +++++++++++ 1847/CH2/EX2.51/Ch02Ex51.sce | 13 +++++++++++++ 1847/CH2/EX2.52/Ch02Ex52.sce | 14 ++++++++++++++ 1847/CH2/EX2.53/Ch02Ex53.sce | 12 ++++++++++++ 1847/CH2/EX2.54/Ch02Ex54.sce | 12 ++++++++++++ 1847/CH2/EX2.55/Ch02Ex55.sce | 14 ++++++++++++++ 1847/CH2/EX2.56/Ch02Ex56.sce | 15 +++++++++++++++ 1847/CH2/EX2.57/Ch02Ex57.sce | 14 ++++++++++++++ 1847/CH2/EX2.58/Ch02Ex58.sce | 16 ++++++++++++++++ 1847/CH2/EX2.59/Ch02Ex59.sce | 14 ++++++++++++++ 1847/CH2/EX2.6/Ch02Ex6.sce | 13 +++++++++++++ 1847/CH2/EX2.60/Ch02Ex60.sce | 12 ++++++++++++ 1847/CH2/EX2.61/Ch02Ex61.sce | 14 ++++++++++++++ 1847/CH2/EX2.62/Ch02Ex62.sce | 13 +++++++++++++ 1847/CH2/EX2.63/Ch02Ex63.sce | 14 ++++++++++++++ 1847/CH2/EX2.64/Ch02Ex64.sce | 16 ++++++++++++++++ 1847/CH2/EX2.65/Ch02Ex65.sce | 13 +++++++++++++ 1847/CH2/EX2.67/Ch02Ex67.sce | 10 ++++++++++ 1847/CH2/EX2.68/Ch02Ex68.sce | 16 ++++++++++++++++ 1847/CH2/EX2.69/Ch02Ex69.sce | 12 ++++++++++++ 1847/CH2/EX2.7/Ch02Ex7.sce | 15 +++++++++++++++ 1847/CH2/EX2.70/Ch02Ex70.sce | 12 ++++++++++++ 1847/CH2/EX2.71/Ch02Ex71.sce | 11 +++++++++++ 1847/CH2/EX2.72/Ch02Ex72.sce | 12 ++++++++++++ 1847/CH2/EX2.73/Ch02Ex73.sce | 12 ++++++++++++ 1847/CH2/EX2.8/Ch02Ex8.sce | 15 +++++++++++++++ 1847/CH2/EX2.9/Ch02Ex9.sce | 12 ++++++++++++ 71 files changed, 985 insertions(+) create mode 100755 1847/CH2/EX2.1/Ch02Ex1.sce create mode 100755 1847/CH2/EX2.10/Ch02Ex10.sce create mode 100755 1847/CH2/EX2.11/Ch02Ex11.sce create mode 100755 1847/CH2/EX2.12/Ch02Ex12.sce create mode 100755 1847/CH2/EX2.13/Ch02Ex13.sce create mode 100755 1847/CH2/EX2.14/Ch02Ex14.sce create mode 100755 1847/CH2/EX2.15/Ch02Ex15.sce create mode 100755 1847/CH2/EX2.16/Ch02Ex16.sce create mode 100755 1847/CH2/EX2.17/Ch02Ex17.sce create mode 100755 1847/CH2/EX2.18/Ch02Ex18.sce create mode 100755 1847/CH2/EX2.19/Ch02Ex19.sce create mode 100755 1847/CH2/EX2.2/Ch02Ex2.sce create mode 100755 1847/CH2/EX2.20/Ch02Ex20.sce create mode 100755 1847/CH2/EX2.21/Ch02Ex21.sce create mode 100755 1847/CH2/EX2.22/Ch02Ex22.sce create mode 100755 1847/CH2/EX2.23/Ch02Ex23.sce create mode 100755 1847/CH2/EX2.24/Ch02Ex24.sce create mode 100755 1847/CH2/EX2.25/Ch02Ex25.sce create mode 100755 1847/CH2/EX2.26/Ch02Ex26.sce create mode 100755 1847/CH2/EX2.27/Ch02Ex27.sce create mode 100755 1847/CH2/EX2.28/Ch02Ex28.sce create mode 100755 1847/CH2/EX2.29/Ch02Ex29.sce create mode 100755 1847/CH2/EX2.3/Ch02Ex3.sce create mode 100755 1847/CH2/EX2.30/Ch02Ex30.sce create mode 100755 1847/CH2/EX2.31/Ch02Ex31.sce create mode 100755 1847/CH2/EX2.32/Ch02Ex32.sce create mode 100755 1847/CH2/EX2.33/Ch02Ex33.sce create mode 100755 1847/CH2/EX2.34/Ch02Ex34.sce create mode 100755 1847/CH2/EX2.35/Ch02Ex35.sce create mode 100755 1847/CH2/EX2.36/Ch02Ex36.sce create mode 100755 1847/CH2/EX2.37/Ch02Ex37.sce create mode 100755 1847/CH2/EX2.38/Ch02Ex38.sce create mode 100755 1847/CH2/EX2.39/Ch02Ex39.sce create mode 100755 1847/CH2/EX2.4/Ch02Ex4.sce create mode 100755 1847/CH2/EX2.40/Ch02Ex40.sce create mode 100755 1847/CH2/EX2.41/Ch02Ex41.sce create mode 100755 1847/CH2/EX2.42/Ch02Ex42.sce create mode 100755 1847/CH2/EX2.43/Ch02Ex43.sce create mode 100755 1847/CH2/EX2.44/Ch02Ex44.sce create mode 100755 1847/CH2/EX2.46/Ch02Ex46.sce create mode 100755 1847/CH2/EX2.47/Ch02Ex47.sce create mode 100755 1847/CH2/EX2.48/Ch02Ex48.sce create mode 100755 1847/CH2/EX2.49/Ch02Ex49.sce create mode 100755 1847/CH2/EX2.5/Ch02Ex5.sce create mode 100755 1847/CH2/EX2.50/Ch02Ex50.sce create mode 100755 1847/CH2/EX2.51/Ch02Ex51.sce create mode 100755 1847/CH2/EX2.52/Ch02Ex52.sce create mode 100755 1847/CH2/EX2.53/Ch02Ex53.sce create mode 100755 1847/CH2/EX2.54/Ch02Ex54.sce create mode 100755 1847/CH2/EX2.55/Ch02Ex55.sce create mode 100755 1847/CH2/EX2.56/Ch02Ex56.sce create mode 100755 1847/CH2/EX2.57/Ch02Ex57.sce create mode 100755 1847/CH2/EX2.58/Ch02Ex58.sce create mode 100755 1847/CH2/EX2.59/Ch02Ex59.sce create mode 100755 1847/CH2/EX2.6/Ch02Ex6.sce create mode 100755 1847/CH2/EX2.60/Ch02Ex60.sce create mode 100755 1847/CH2/EX2.61/Ch02Ex61.sce create mode 100755 1847/CH2/EX2.62/Ch02Ex62.sce create mode 100755 1847/CH2/EX2.63/Ch02Ex63.sce create mode 100755 1847/CH2/EX2.64/Ch02Ex64.sce create mode 100755 1847/CH2/EX2.65/Ch02Ex65.sce create mode 100755 1847/CH2/EX2.67/Ch02Ex67.sce create mode 100755 1847/CH2/EX2.68/Ch02Ex68.sce create mode 100755 1847/CH2/EX2.69/Ch02Ex69.sce create mode 100755 1847/CH2/EX2.7/Ch02Ex7.sce create mode 100755 1847/CH2/EX2.70/Ch02Ex70.sce create mode 100755 1847/CH2/EX2.71/Ch02Ex71.sce create mode 100755 1847/CH2/EX2.72/Ch02Ex72.sce create mode 100755 1847/CH2/EX2.73/Ch02Ex73.sce create mode 100755 1847/CH2/EX2.8/Ch02Ex8.sce create mode 100755 1847/CH2/EX2.9/Ch02Ex9.sce (limited to '1847/CH2') diff --git a/1847/CH2/EX2.1/Ch02Ex1.sce b/1847/CH2/EX2.1/Ch02Ex1.sce new file mode 100755 index 000000000..31c3c090b --- /dev/null +++ b/1847/CH2/EX2.1/Ch02Ex1.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.1:: Page-2.9 (2009) +clc; clear; +lambda = 5893e-008; // Wavelength of light used, m +D = 200; // Distance of the source from the screen, m +b = 0.2; // Fringe separation, cm +d = lambda*D/b; // Separation between the slits, cm + +printf("\nThe separation between the slits = %3.1e cm", d); + +// Result +// The separation between the slits = 5.9e-002 cm diff --git a/1847/CH2/EX2.10/Ch02Ex10.sce b/1847/CH2/EX2.10/Ch02Ex10.sce new file mode 100755 index 000000000..979c40c19 --- /dev/null +++ b/1847/CH2/EX2.10/Ch02Ex10.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.10:: Page-2.12 (2009) +clc; clear; +D = 100; // Distance between slits and the screen, cm +d = 0.08; // Separation between the slits, cm +b = 2.121/25; // Fringe width of the interfernce pattern due to biprism, cm +lambda = b*d/D; // Wavelength of light in a biprism experiment, cm + +printf("\nThe wavelength of light in a biprism experiment = %5.0f angstrom", lambda/1e-008); + +// Result +// The wavelength of light in a biprism experiment = 6787 angstrom diff --git a/1847/CH2/EX2.11/Ch02Ex11.sce b/1847/CH2/EX2.11/Ch02Ex11.sce new file mode 100755 index 000000000..04ad332e5 --- /dev/null +++ b/1847/CH2/EX2.11/Ch02Ex11.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.11:: Page-2.13 (2009) +clc; clear; +alpha = %pi/180; // Acute angle of biprism, radian +mu = 1.5; // Refractive index of biprism +lambda = 5900e-008; // Wavelength of light used, cm +y1 = 10; // Distance of biprism from the source, cm +y2 = 100; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm +b = lambda*D/d; // Fringe width of the interfernce pattern due to biprism, cm + +printf("\nThe fringe width at a distance of %d cm from biprism = %4.2e cm", y2, b); + +// Result +// The fringe width at a distance of 100 cm from biprism = 3.72e-02 cm diff --git a/1847/CH2/EX2.12/Ch02Ex12.sce b/1847/CH2/EX2.12/Ch02Ex12.sce new file mode 100755 index 000000000..ca474091e --- /dev/null +++ b/1847/CH2/EX2.12/Ch02Ex12.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.12:: Page-2.13 (2009) +clc; clear; +lambda = 5893e-008; // Wavelength of light used, cm +y1 = 10; // Distance of biprism from the source, cm +y2 = 100; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +b = 3.5e-02; // Fringe width of the interfernce pattern due to biprism, cm +d = lambda*D/b; // Distance between coherent sources, cm + +printf("\nThe distance between coherent sources = %5.3f cm", d); + +// Result +// The distance between coherent sources = 0.185 cm diff --git a/1847/CH2/EX2.13/Ch02Ex13.sce b/1847/CH2/EX2.13/Ch02Ex13.sce new file mode 100755 index 000000000..70ceb318d --- /dev/null +++ b/1847/CH2/EX2.13/Ch02Ex13.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.13:: Page-2.13 (2009) +clc; clear; +b = 0.125; // Fringe width of the interfernce pattern due to biprism, cm +d = 1; // For simplicity assume distance between sources to be unity, cm +d_prime = 3/4*d; // New distance between sources, cm +// As b is proportional to 1/d, so +b_prime = b*d/d_prime; // New fringe width of the interfernce pattern due to biprism, cm + +printf("\nThe new value of fringe width due to reduced slit separation = %5.3f cm", b_prime); + +// Result +// The new value of fringe width due to reduced slit separation = 0.167 cm diff --git a/1847/CH2/EX2.14/Ch02Ex14.sce b/1847/CH2/EX2.14/Ch02Ex14.sce new file mode 100755 index 000000000..fc17dbd5f --- /dev/null +++ b/1847/CH2/EX2.14/Ch02Ex14.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.14:: Page-2.13 (2009) +clc; clear; +b = 0.187; // Fringe width of the interfernce pattern due to biprism, cm +y1 = 1; // For simplicity assume distance between slit and biprism to be unity, cm +y1_prime = 1.25*y1; // New distance between slit and biprism, cm +// As d is directly proportional to y1 and b is directly proportional to d, so +// b is inversely proportional to y1 +b_prime = b*y1/y1_prime; // New fringe width of the interfernce pattern due to biprism, cm + +printf("\nThe new value of fringe width due to increased slit-biprism separation = %5.3f cm", b_prime); + +// Result +// The new value of fringe width due to increased slit-biprism separation = 0.150 cm diff --git a/1847/CH2/EX2.15/Ch02Ex15.sce b/1847/CH2/EX2.15/Ch02Ex15.sce new file mode 100755 index 000000000..2b62b3419 --- /dev/null +++ b/1847/CH2/EX2.15/Ch02Ex15.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.15:: Page-2.14 (2009) +clc; clear; +d1 = 5e-01; // First distance between images of the slit, cm +d2 = 2.25e-01; // Second distance between images of the slit, cm +lambda = 5896e-008; // Wavelength of the light used, cm +D = 120; // Distance between screen and the slits, cm +d = sqrt(d1*d2); // Geometric mean of distance between the two slits, cm +b = lambda*D/d; // Distance between interference bands, cm + +printf("\nThe distance between interference bands = %5.3e cm", b); + +// Result +// The distance between interference bands = 2.109e-02 cm diff --git a/1847/CH2/EX2.16/Ch02Ex16.sce b/1847/CH2/EX2.16/Ch02Ex16.sce new file mode 100755 index 000000000..d28280f18 --- /dev/null +++ b/1847/CH2/EX2.16/Ch02Ex16.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.16:: Page-2.14 (2009) +clc; clear; +mu = 1.5; // Refractive index of biprism +lambda = 5500e-008; // Wavelength of light used, cm +y1 = 25; // Distance of biprism from the source, cm +y2 = 150; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +b = 0.05; // Fringe width of the interfernce pattern due to biprism, cm +// As d = 2*(mu-1)*alpha*y1, solving for alpha +alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of vertex of the biprism, radian + +printf("\nThe angle of vertex of the biprism = %6.4f rad", alpha); + +// Result +// The angle of vertex of the biprism = 0.0077 rad diff --git a/1847/CH2/EX2.17/Ch02Ex17.sce b/1847/CH2/EX2.17/Ch02Ex17.sce new file mode 100755 index 000000000..c42bc889a --- /dev/null +++ b/1847/CH2/EX2.17/Ch02Ex17.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.17:: Page-2.15 (2009) +clc; clear; +theta = 178; // Vertex angle of biprism, degrees +alpha = (180-theta)/2*%pi/180; // Acute angle of biprism, radian +mu = 1.5; // Refractive index of biprism +y1 = 20; // Distance of biprism from the source, cm +y2 = 125; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm +b = 0.025; // Fringe width of the interfernce pattern due to biprism, cm +lambda = b*d/D; // Wavelength of light used, cm + +printf("\nThe wavelength of light used to illuminate slits = %4d angstrom", lambda/1e-08); + +// Result +// The wavelength of light used to illuminate slits = 6018 angstrom diff --git a/1847/CH2/EX2.18/Ch02Ex18.sce b/1847/CH2/EX2.18/Ch02Ex18.sce new file mode 100755 index 000000000..0d4c4f517 --- /dev/null +++ b/1847/CH2/EX2.18/Ch02Ex18.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.18:: Page-2.15 (2009) +clc; clear; +mu = 1.5; // Refractive index of biprism +lambda = 6600e-008; // Wavelength of light used, cm +y1 = 40; // Distance of biprism from the source, cm +y2 = 175; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +b = 0.04; // Fringe width of the interfernce pattern due to biprism, cm +// As d = 2*(mu-1)*alpha*y1, solving for alpha +alpha = lambda*D/(b*2*(mu-1)*y1) // Acute angle of the biprism, radian +theta = (%pi-2*alpha); // Vertex angle of the biprism, radian + +printf("\nThe vertex angle of the biprism = %6.2f degrees", theta*180/%pi); + +// Result +// The vertex angle of the biprism = 178.98 degrees diff --git a/1847/CH2/EX2.19/Ch02Ex19.sce b/1847/CH2/EX2.19/Ch02Ex19.sce new file mode 100755 index 000000000..41032271f --- /dev/null +++ b/1847/CH2/EX2.19/Ch02Ex19.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.19: : Page-2.16 (2009) +clc; clear; +lambda1 = 7000e-008; // Original wavelength of light, cm +lambda2 = 5000e-008; // New wavelength of light, cm +n1 = 10; // Order of the fringes with original wavelength +// As x = n*lambda*D/d, so n*lambda = constant +// n1*lambda1 = n2*lambda2, solving for n2 +n2 = n1*lambda1/lambda2; // Order of visible fringe for changed wavelength of light + +printf("\nThe order of visible fringe for changed wavelength of light = %2d", ceil(n2)); + +// Result +// The order of visible fringe for changed wavelength of light = 14 diff --git a/1847/CH2/EX2.2/Ch02Ex2.sce b/1847/CH2/EX2.2/Ch02Ex2.sce new file mode 100755 index 000000000..d6285d78c --- /dev/null +++ b/1847/CH2/EX2.2/Ch02Ex2.sce @@ -0,0 +1,10 @@ +// Scilab Code Ex2.2:: Page-2.10 (2009) +clc; clear; +d = 0.2; // Separation between the slits, cm +D = 100; // Distance of the source from the screen, m +b = 0.35e-01; // Fringe separation, cm +lambda = b*d/D; // Wavelength of light used, m +printf("\nThe wavelength of the light = %3.1e cm", lambda); + +// Result +// The wavelength of the light = 7.0e-005 cm diff --git a/1847/CH2/EX2.20/Ch02Ex20.sce b/1847/CH2/EX2.20/Ch02Ex20.sce new file mode 100755 index 000000000..0d6cba1c8 --- /dev/null +++ b/1847/CH2/EX2.20/Ch02Ex20.sce @@ -0,0 +1,17 @@ +// Scilab Code Ex1.20:: Page-2.16 (2009) +clc; clear; +y1 = 40; // Distance between biprism from the slit, cm +D = 160; // Distance between slit and the screen, cm +mu = 1.52; // Refractive index of material of the prism +lambda = 5893e-008; // Wavelength of light used, cm +b = 0.01; // Fringe width, cm +// As b = lambda*D/d, solving for d +d = lambda*D/b; // Distance between virtual sources, cm +// But d = 2*y1*(mu-1)*alpha, solving for alpha +alpha = d/(2*y1*(mu-1))*180/%pi; // Angle of biprism, degrees +theta = 180-2*alpha; // Angle of vertex of biprism, degrees + +printf("\nThe angle of vertex of biprism = %5.1f degree", theta); + +// Result +// The angle of vertex of biprism = 177.4 degree diff --git a/1847/CH2/EX2.21/Ch02Ex21.sce b/1847/CH2/EX2.21/Ch02Ex21.sce new file mode 100755 index 000000000..e9893c0e7 --- /dev/null +++ b/1847/CH2/EX2.21/Ch02Ex21.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.21: : Page-2.16 (2009) +clc; clear; +lambda = 6000e-008; // Wavelength of light used, cm +D = 100; // Distance between slits and the screen, cm +b = 0.05; // Fringe width of the interfernce pattern due to biprism, cm +d = lambda*D/b; // Distance between coherent sources, cm + +printf("\nThe distance between coherent sources = %3.1f mm", d/1e-01); + +// Result +// The distance between coherent sources = 1.2 mm diff --git a/1847/CH2/EX2.22/Ch02Ex22.sce b/1847/CH2/EX2.22/Ch02Ex22.sce new file mode 100755 index 000000000..2d8e2e5a8 --- /dev/null +++ b/1847/CH2/EX2.22/Ch02Ex22.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.22:: Page-2.19 (2009) +clc; clear; +t = 3.2e-04; // Thickness of the glass sheet, cm +lambda = 5500e-008; // Wavelength of light used, cm +n = 5; // Order of interference fringes +// As path difference (mu - 1)*t = n*lambda +mu = n*lambda/t + 1; // Refractive indexof the glass sheet + +printf("\nThe refractive index of the glass sheet= %4.2f", mu); + +// Result +// The refractive indexof the glass sheet= 1.86 diff --git a/1847/CH2/EX2.23/Ch02Ex23.sce b/1847/CH2/EX2.23/Ch02Ex23.sce new file mode 100755 index 000000000..c993f377c --- /dev/null +++ b/1847/CH2/EX2.23/Ch02Ex23.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.23:: Page-2.19 (2009) +clc; clear; +t = 2.1e-03; // Thickness of the glass sheet, cm +lambda = 5400e-008; // Wavelength of light used, cm +n = 11; // Order of interference fringes +// As path difference, (mu - 1)*t = n*lambda +mu = n*lambda/t + 1; // Refractive index of the glass sheet + +printf("\nThe refractive index of the glass sheet = %4.2f", mu); + +// Result +// The refractive index of the glass sheet= 1.28 diff --git a/1847/CH2/EX2.24/Ch02Ex24.sce b/1847/CH2/EX2.24/Ch02Ex24.sce new file mode 100755 index 000000000..a87928fb4 --- /dev/null +++ b/1847/CH2/EX2.24/Ch02Ex24.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.24:: Page-2.19 (2009) +clc; clear; +t = 9.21e-05; // Thickness of the mica sheet, cm +mu = 1.5; // Refractive index of material of sheet +n = 1; // Order of interference fringes +// As path difference, (mu - 1)*t = n*lambda, solving for lambda +lambda = (mu - 1)*t/n; // Wavelength of light used, cm + +printf("\nThe wavelength of light used = %5.3e cm", lambda); + +// Result +// The wavelength of light used = 4.605e-005 cm diff --git a/1847/CH2/EX2.25/Ch02Ex25.sce b/1847/CH2/EX2.25/Ch02Ex25.sce new file mode 100755 index 000000000..42eb8f303 --- /dev/null +++ b/1847/CH2/EX2.25/Ch02Ex25.sce @@ -0,0 +1,10 @@ +// Scilab Code Ex2.25:: Page-2.19 (2009) +clc; clear; +lambda = 5890e-008; // Wavelength of light used, cm +mu = 1.5; // Refractive index of material sheet +// As shift = 9*lambda*D/d = D/d*(mu - 1)*t, solving for t +t = 9*lambda/(mu - 1); // Thickness of the glass sheet, cm +printf("\nThe thickness of the glass sheet = %4.2e cm", t); + +// Result +// The thickness of the glass sheet = 1.06e-003 cm diff --git a/1847/CH2/EX2.26/Ch02Ex26.sce b/1847/CH2/EX2.26/Ch02Ex26.sce new file mode 100755 index 000000000..fa9bdac11 --- /dev/null +++ b/1847/CH2/EX2.26/Ch02Ex26.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.26:: Page-2.20 (2009) +clc; clear; +lambda = 5400e-008; // Wavelength of light used, cm +mu = 1.7; // Refractive index of material sheet convering the first slit +mu_prime = 1.5; // Refractive index of material sheet convering the seecond slit +// As shift, S = D/d*(mu - mu_prime)*t = b/lambda*(mu - mu_prime)*t, solving for t +t = 8*lambda/(mu-mu_prime) // Thickness of the glass sheet, cm + +printf("\nThe thickness of the glass sheet = %4.2e cm", t); + +// Result +// The thickness of the glass sheet = 2.16e-003 cm diff --git a/1847/CH2/EX2.27/Ch02Ex27.sce b/1847/CH2/EX2.27/Ch02Ex27.sce new file mode 100755 index 000000000..17f3e7297 --- /dev/null +++ b/1847/CH2/EX2.27/Ch02Ex27.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.27:: Page-2.20 (2009) +clc; clear; +t = 21.5e-05; // Thickness of the glass sheet, cm +lambda = 5890e-008; // Wavelength of light used, cm +n = 1; // Order of interference fringes +// As path difference, (mu - 1)*t = n*lambda +mu = n*lambda/t + 1; // Refractive indexof the glass sheet + +printf("\nThe refractive index of the glass sheet = %5.3f", mu); + +// Result +// The refractive index of the glass sheet = 1.274 diff --git a/1847/CH2/EX2.28/Ch02Ex28.sce b/1847/CH2/EX2.28/Ch02Ex28.sce new file mode 100755 index 000000000..279ee352b --- /dev/null +++ b/1847/CH2/EX2.28/Ch02Ex28.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.28:: Page-2.20 (2009) +clc; clear; +D = 1; // For simplicity assume distance between source and slits to be unity, unit +d = 1; // For simplicity assume slit separation to be unity, unit +t = 2.964e-06; // Thickness of the mica sheet, cm +mu = 1.5; // Refractive index of material of shee +L = poly(0, 'L'); +// As b = b_prime or 2.25*D*L/d = D/d*(mu-1)*t, or we may write +L = roots(2.25*D*L/d-D/d*(mu-1)*t); // Wavelength of the light used, m + +printf("\nThe wavelength of the light used = %4.0f angstrom", L/1e-010); + +// Result +// The wavelength of the light used = 6587 angstrom diff --git a/1847/CH2/EX2.29/Ch02Ex29.sce b/1847/CH2/EX2.29/Ch02Ex29.sce new file mode 100755 index 000000000..bfbf2fcaf --- /dev/null +++ b/1847/CH2/EX2.29/Ch02Ex29.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.29:: Page-2.21 (2009) +clc; clear; +lambda = 5890e-008; // Wavelength of light used, cm +n = 5; // Order of interference fringes +mu = 1.5; // Refractive index of the mica sheet +// As path difference, (mu - 1)*t = n*lambda, solving for t +t = n*lambda/(mu-1); // Thickness of the mica sheet, cm + +printf("\nThe thickness of the mica sheet = %4.2e cm", t); + +// Result +// The thickness of the mica sheet = 5.89e-004 cm diff --git a/1847/CH2/EX2.3/Ch02Ex3.sce b/1847/CH2/EX2.3/Ch02Ex3.sce new file mode 100755 index 000000000..e8223f504 --- /dev/null +++ b/1847/CH2/EX2.3/Ch02Ex3.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.3:: Page-2.10 (2009) +clc; clear; +I2 = 1; // For simplicity assume intensity from slit 2 to be unity, W/sq-m +I1 = I2*25; // Intensity from slit 1, W/sq-m +I_ratio = I1/I2; // Intensity ratio +a_ratio = sqrt(I_ratio); // Amplitude ratio +a2 = 1; // For simplicity assume amplitude from slit 2 to be unity, m +a1 = a_ratio*a2; // Amplitude from slit 1, m +I_max = (a1 + a2)^2; // Maximum intensity of wave during interference, W/sq-m +I_min = (a1 - a2)^2; // Minimum intensity of wave during interference, W/sq-m +cf = 4; // Common factor +printf("\nThe ratio of maximum intentisy to minimum intensity of interference fringes = %d/%d", I_max/cf, I_min/cf); + +// Result +// The ratio of maximum intentisy to minimum intensity of interference fringes = 9/4 diff --git a/1847/CH2/EX2.30/Ch02Ex30.sce b/1847/CH2/EX2.30/Ch02Ex30.sce new file mode 100755 index 000000000..407c2d44b --- /dev/null +++ b/1847/CH2/EX2.30/Ch02Ex30.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.30:: Page-2.21 (2009) +clc; clear; +b = 1; // For simplicity assume fringe width to be unity, cm +S = 30*b; // Fringe shift, cm +lambda = 6600e-008; // Wavelength of light used, cm +t = 4.9e-003; // Thickness of the film, cm +// As S = b/lambda*(mu-1)*t, solving for mu +mu = S*lambda/t + 1; // Refractive index of material from shifting fringe pattern + +printf("\nThe refractive index of material from shifting fringe pattern = %3.1f", mu); + +// Result +// The refractive index of material from shifting fringe pattern = 1.4 diff --git a/1847/CH2/EX2.31/Ch02Ex31.sce b/1847/CH2/EX2.31/Ch02Ex31.sce new file mode 100755 index 000000000..04dfa56a7 --- /dev/null +++ b/1847/CH2/EX2.31/Ch02Ex31.sce @@ -0,0 +1,19 @@ +// Scilab Code Ex2.31:: Page-2.22 (2009) +clc; clear; +mu1 = 1.55; // Refractive index of mica +mu2 = 1.52; // Refractive index of glass +t = 0.75e-003; // Thickness of the sheets, m +d = 0.25e-02; // Separation between the slits, m +lambda = 5896e-010; // Wavelength of light used, m +D = 1.5; // Distance between the source ans the slits, m +// Fringe width +b = lambda*D/d; // Fringe width, m +// Optical path difference +delta_x = (mu1-1)*t-(mu2-1)*t; // Optical path change, m + +printf("\nThe fringe width = %3.1e m", b); +printf("\nThe optical path change = %5.3e m", delta_x); + +// Result +// The fringe width = 3.5e-004 m +// The optical path change = 2.250e-005 m diff --git a/1847/CH2/EX2.32/Ch02Ex32.sce b/1847/CH2/EX2.32/Ch02Ex32.sce new file mode 100755 index 000000000..64d1d897d --- /dev/null +++ b/1847/CH2/EX2.32/Ch02Ex32.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.32:: Page-2.22 (2009) +clc; clear; +b = 1; // For simplicity assume fringe width to be unity, cm +S = 3*b; // Fringe shift, cm +lambda = 5890e-008; // Wavelength of light used, cm +mu = 1.6; // Refractive index of the mica sheet +// As S = b/lambda*(mu-1)*t, solving for t +t = S*lambda/(mu-1); // Thickness of the mica sheet, cm + +printf("\nThe thickness of the mica sheet = %3.1e m", t/1e+02); + +// Result +// The thickness of the mica sheet = 2.9e-006 m diff --git a/1847/CH2/EX2.33/Ch02Ex33.sce b/1847/CH2/EX2.33/Ch02Ex33.sce new file mode 100755 index 000000000..98b8df2c0 --- /dev/null +++ b/1847/CH2/EX2.33/Ch02Ex33.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.33: : Page-2.26 (2009) +clc; clear; +mu = 1.5; // Refractive index of glass +lambda = 5100e-008; // Wavelength of light used, cm +i = 30; // Angle of incidence, degrees +n = 1; // Order of interference fringes +// From Snell's law, mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); // Angle of refraction, degrees +// For a dark fringe in reflection, 2*mu*t*cosd(r) = n*lambda, solving for t +t = n*lambda/(2*mu*cosd(r)); // Smallest thickness of glass plate for a fringe of minimum intensity, cm +printf("\nThe smallest thickness of glass plate for a fringe of minimum intensity = %4.2e cm", t); + +// Result +// The smallest thickness of glass plate for a fringe of minimum intensity = 1.80e-005 cm diff --git a/1847/CH2/EX2.34/Ch02Ex34.sce b/1847/CH2/EX2.34/Ch02Ex34.sce new file mode 100755 index 000000000..866613108 --- /dev/null +++ b/1847/CH2/EX2.34/Ch02Ex34.sce @@ -0,0 +1,19 @@ +// Scilab Code Ex2.34:: Page-2.26 (2009) +clc; clear; +t = 3.1e-05; // Thickness of the soap film, cm +mu = 1.33; // Refractive index of the soap film +r = 0; // Angle of refraction of the light ray on the soap film, degrees +// For bright fringe in reflected pattern, +// 2*mu*t*cosd(r) = (2*n+1)*lambda/2 +lambda = zeros(3); +for n = 1:1:3 + lambda(n) = 4*mu*t*cosd(r)/(2*(n-1)+1); // Wavelengths for n = 1, 2 and 3 + if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then + lambda_reflected = lambda(n); + end +end + +printf("\nThe wavelength reflected strongly from the soap film = %5.3e cm", lambda_reflected); + +// Result +// The wavelength reflected strongly from the soap film = 5.497e-05 cm diff --git a/1847/CH2/EX2.35/Ch02Ex35.sce b/1847/CH2/EX2.35/Ch02Ex35.sce new file mode 100755 index 000000000..d59ffd166 --- /dev/null +++ b/1847/CH2/EX2.35/Ch02Ex35.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.35:: Page-2.27 (2009) +clc; clear; +t = 3.8e-05; // Thickness of the transparent film, cm +mu = 1.5; // Refractive index of the transparent film +i = 45; // Angle of incidence of the light ray on the transparent film, degrees +lambda = 5700e-008; // Wavelength of light, cm +// As mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = 2*n*lambda, solving for n +n = 2*mu*t*cosd(r)/lambda; // Order of interference of dark band + +printf("\nThe order of interference of dark band = %d", ceil(n)); + +// Result +// The order of interference of dark band = 2velength reflected strongly from the soap film = 5.497e-05 cm diff --git a/1847/CH2/EX2.36/Ch02Ex36.sce b/1847/CH2/EX2.36/Ch02Ex36.sce new file mode 100755 index 000000000..66f0c63de --- /dev/null +++ b/1847/CH2/EX2.36/Ch02Ex36.sce @@ -0,0 +1,20 @@ +// Scilab Code Ex2.36:: Page-2.27 (2009) +clc; clear; +t = 4.5e-05; // Thickness of the soap film, cm +mu = 1.33; // Refractive index of the soap film +i = 45; // Angle of incidence of the light ray on the soap film, degrees +// As mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = n*lambda, solving for lambda for different n's +lambda = zeros(4); +for n = 1:1:4 + lambda(n) = 2*mu*t*cosd(r)/n; // Wavelengths for n = 1, 2, 3 and 4 + if lambda(n) > 4000e-008 & lambda(n) < 7500e-008 then + lambda_absent = lambda(n); + end +end +printf("\nThe absent wavelength of reflected light in the visible spectrum = %4.2e", lambda_absent); + +// Result +// The absent wavelength of reflected light in the visible spectrum = 5.07e-05 diff --git a/1847/CH2/EX2.37/Ch02Ex37.sce b/1847/CH2/EX2.37/Ch02Ex37.sce new file mode 100755 index 000000000..f1c8d2073 --- /dev/null +++ b/1847/CH2/EX2.37/Ch02Ex37.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.37:: Page-2.28 (2009) +clc; clear; +mu = 1.6; // Refractive index of the mica plate +r = 60; // Angle of refraction of the light ray on the mica plate, degrees +lambda = 5500e-008; // Wavelength of light used, cm +n = 1; // Order of interference for minimum thickness +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = 2*n*lambda, solving for t +t = n*lambda/(2*mu*cosd(r)); // Minimum thickness of the plate that will appear dark in the reflection pattern + +printf("\nThe minimum thickness of the plate that will appear dark in the reflection pattern = %4.2e cm", t); + +// Result +// The minimum thickness of the plate that will appear dark in the reflection pattern = 3.44e-05 cm diff --git a/1847/CH2/EX2.38/Ch02Ex38.sce b/1847/CH2/EX2.38/Ch02Ex38.sce new file mode 100755 index 000000000..de9e9af8b --- /dev/null +++ b/1847/CH2/EX2.38/Ch02Ex38.sce @@ -0,0 +1,19 @@ +// Scilab Code Ex2.38:: Page-2.28 (2009) +clc; clear; +mu = 1.33; // Refractive index of the thin soap film +lambda1 = 5500e-008; // Wavelength of the first dark fringe, cm +lambda2 = 5400e-008; // Wavelength of the consecutive dark fringe, cm +i = 30; // Angle of incidence of the light ray on the soap film, degrees +// For overlapping fringes, +// n*lambda1 = (n+1)*lambda2, solving for n +n = lambda2/(lambda1-lambda2); // Order of interference fringes +// As mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = 2*n*lambda1, solving for t +t = n*lambda1/(2*mu*cosd(r)); // Thickness of the thin soap film + +printf("\nThe thickness of the thin soap film = %5.3e cm", t); + +// Result +// The thickness of the thin soap film = 1.205e-03 cm diff --git a/1847/CH2/EX2.39/Ch02Ex39.sce b/1847/CH2/EX2.39/Ch02Ex39.sce new file mode 100755 index 000000000..f74275481 --- /dev/null +++ b/1847/CH2/EX2.39/Ch02Ex39.sce @@ -0,0 +1,19 @@ +// Scilab Code Ex2.39:: Page-2.29 (2009) +clc; clear; +t = 0.75e-06; // Thickness of the glass plate, m +mu = 1.5; // Refractive index of the glass plate +lambda1 = 4000e-010; // First wavelength of visible range, cm +lambda2 = 7000e-010; // Last wavelength of visible range, cm +r = 0; // Angle of refraction for normal incidence, degrees +n = zeros(2); +// For bright fringe in reflected pattern, +// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for n +// For lambda1 +n(1) = (4*mu*t*cosd(r)/lambda1-1)/2; +// For lambda2 +n(2) = (4*mu*t*cosd(r)/lambda2-1)/2; + +printf("\nFor n = %d and n = %d the light is strongly reflected.", n(1), ceil(n(2))); + +// Result +// For n = 5 and n = 3 the light is strongly reflected. diff --git a/1847/CH2/EX2.4/Ch02Ex4.sce b/1847/CH2/EX2.4/Ch02Ex4.sce new file mode 100755 index 000000000..84a8ee7bc --- /dev/null +++ b/1847/CH2/EX2.4/Ch02Ex4.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.4:: Page-2.10 (2009) +clc; clear; +d = 0.02; // Separation between the slits, cm +D = 100; // Distance of the source from the screen, m +n = 6; // No. of bright fringe from the centre +x = 1.22; // Position of 6th bright fringe, cm +lambda = x*d/(n*D); // Wavelength of light used, m +printf("\nThe wavelength of the light from coherent sources = %5.3e cm", lambda); + +// Result +// The wavelength of the light from coherent sources = 4.067e-005 cm diff --git a/1847/CH2/EX2.40/Ch02Ex40.sce b/1847/CH2/EX2.40/Ch02Ex40.sce new file mode 100755 index 000000000..cb48be48d --- /dev/null +++ b/1847/CH2/EX2.40/Ch02Ex40.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.40:: Page-2.30 (2009) +clc; clear; +mu = 1.45; // Refractive index of the film +lambda = 5500e-010; // First wavelength of visible range, cm +r = 0; // Angle of refraction for normal incidence, degrees +n = 0; // Order of interference is zero for minimum thickness +// For bright fringe in reflected pattern, +// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for t +t = (2*n+1)*lambda/(4*mu*cosd(r)); // Minimum thickness of the film for which light is strongly reflected + +printf("\nThe minimum thickness of the film for which light is strongly reflected = %4.2e cm", t); + +// Result +// The minimum thickness of the film for which light is strongly reflected = 9.48e-08 cm diff --git a/1847/CH2/EX2.41/Ch02Ex41.sce b/1847/CH2/EX2.41/Ch02Ex41.sce new file mode 100755 index 000000000..103eb888e --- /dev/null +++ b/1847/CH2/EX2.41/Ch02Ex41.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.41:: Page-2.30 (2009) +clc; clear; +mu = 5/4; // Refractive index of the film +lambda = 5890e-010; // Wavelength of visible light, cm +i = 45; // Angle of incidence, degrees +n = 1; // Order of interference is unity for minimum thickness in dark reflected pattern +// As mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = n*lambda, solving for t +t = n*lambda/(2*mu*cosd(r)); // Thickness of the soap film for dark fringe in reflected pattern + +printf("\nThe thickness of the soap film for dark fringe in reflected pattern = %5.3e cm", t); + +// Result +// The thickness of the soap film for dark fringe in reflected pattern = 2.857e-07 cm diff --git a/1847/CH2/EX2.42/Ch02Ex42.sce b/1847/CH2/EX2.42/Ch02Ex42.sce new file mode 100755 index 000000000..e7c18c502 --- /dev/null +++ b/1847/CH2/EX2.42/Ch02Ex42.sce @@ -0,0 +1,22 @@ +// Scilab Code Ex2.42:: Page-2.30 (2009) +clc; clear; +mu = 1.5; // Refractive index of the plate +t = 0.5e-006; // Thickness of the plate, m +r = 0; // Angle of refraction for normal incidence, degrees +// For bright fringe in reflected pattern, +// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for lambda for different n's +lambda = zeros(4); +for n = 0:1:3 + lambda(n+1) = 4*mu*t*cosd(r)/(2*n+1); // Wavelengths for n = 0, 1, 2 and 3 + lambda_strong = lambda(n+1); + if lambda(n+1) >= 4000e-010 & lambda(n+1) <= 7500e-010 then + if lambda_strong > lambda(n+1) then // Search for the stronger wavelength + lambda_strong = lambda(n+1); + end + end +end + +printf("\nFor n = %d, %4.0f angstrom will be reflected strongly", n, lambda_strong/1e-010); + +// Result +// For n = 3, 4286 angstrom will be reflected strongly diff --git a/1847/CH2/EX2.43/Ch02Ex43.sce b/1847/CH2/EX2.43/Ch02Ex43.sce new file mode 100755 index 000000000..877b3d976 --- /dev/null +++ b/1847/CH2/EX2.43/Ch02Ex43.sce @@ -0,0 +1,18 @@ +// Scilab Code Ex2.43:: Page-2.31(2009) +clc; clear; +mu = 1.33; // Refractive index of the film +i = asind(0.8); // Angle of refraction for normal incidence, degrees +// As mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); +lambda1 = 6100e-010; // First wavelength of dark band, m +lambda2 = 6000e-010; // Second wavelength of dark band, m +// For consecutive overlapping wavelenghts +// n*lambda1 = (n+1)*lambda2, solving for n +n = lambda2/(lambda1-lambda2); +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = n*lambda1, solving for t +t = n*lambda1/(2*mu*cosd(r)); // Thickness of the film with incident white light. m +printf("\nThickness of the film with incident white light = %3.1e m", t); + +// Result +// Thickness of the film with incident white light = 1.7e-05 m diff --git a/1847/CH2/EX2.44/Ch02Ex44.sce b/1847/CH2/EX2.44/Ch02Ex44.sce new file mode 100755 index 000000000..05bf42f91 --- /dev/null +++ b/1847/CH2/EX2.44/Ch02Ex44.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.44:: Page-2.31(2009) +clc; clear; +mu = 1.5; // Refractive index of the film +i = 45; // Angle of incidence, degrees +// As mu = sind(i)/sind(r), solving for r +r = asind(sind(i)/mu); +lambda = 5500e-010; // Wavelength of parallel beam of light, m +n = 15; // Order of dark band +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = n*lambda, solving for t +t = n*lambda/(2*mu*cosd(r)); // Thickness of the film with incident parallel beam of light. m + +printf("\nThe thickness of the film with paralle beam of yellow light = %4.2e m", t); + +// Result +// The thickness of the film with paralle beam of yellow light = 3.12e-06 m diff --git a/1847/CH2/EX2.46/Ch02Ex46.sce b/1847/CH2/EX2.46/Ch02Ex46.sce new file mode 100755 index 000000000..120a2d8ca --- /dev/null +++ b/1847/CH2/EX2.46/Ch02Ex46.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.46:: Page-2.33(2009) +clc; clear; +V = 0.58e-006; // Volume of oil, metre cube +A = 2.5; // Area of water surface, metre square +t = V/A; // Thickness of film, m +r = 0; // Angle of refraction for normal incidence, degrees +n = 1; // Order of interference for minimum thickness +lambda = 4700e-010; // Wavelength of light used, m +// For dark fringe in reflected pattern, +// 2*mu*t*cosd(r) = n*lambda, solving for mu +mu = n*lambda/(2*t*cosd(r)); // Refractive index of oil + +printf("\nThe refractive index of oil = %5.3f", mu); + +// Result +// The refractive index of oil = 1.013 diff --git a/1847/CH2/EX2.47/Ch02Ex47.sce b/1847/CH2/EX2.47/Ch02Ex47.sce new file mode 100755 index 000000000..c78aa5126 --- /dev/null +++ b/1847/CH2/EX2.47/Ch02Ex47.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.47:: Page-2.33(2009) +clc; clear; +mu = 1.46; // Refractive index of the soap film +lambda = 6000e-010; // Wavelength of light used, m +r = 0; // Angle of refraction for normal incidence, degrees +n = 0; // Order of interference for minimum thickness +// For bright fringe in reflected pattern, +// 2*mu*t*cosd(r) = (2*n+1)*lambda/2, solving for mu +t = (2*n+1)*lambda/(4*mu*cosd(r)); // Thickness of soap film, m + +printf("\nThe thickness of soap film = %5.3e m", t); + +// Result +// The thickness of soap film = 1.027e-07 m diff --git a/1847/CH2/EX2.48/Ch02Ex48.sce b/1847/CH2/EX2.48/Ch02Ex48.sce new file mode 100755 index 000000000..8c87bc5e6 --- /dev/null +++ b/1847/CH2/EX2.48/Ch02Ex48.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.48: : Page-2.35(2009) +clc; clear; +mu = 1.4; // Refractive index of the film +alpha = 1.07e-004; // Acute angle of the wedge, radian +b = 0.2; // Fringe width, cm +// As b = lambda/(2*mu*alpha), solving for lambda +lambda = 2*mu*alpha*b; // Wavelength of light falling on wedge shaped film, m + +printf("\nThe wavelength of light falling on wedge shaped film = %4d ansgtrom", lambda/1e-008); + +// Result +// The wavelength of light falling on wedge shaped film = 5991 ansgtrom diff --git a/1847/CH2/EX2.49/Ch02Ex49.sce b/1847/CH2/EX2.49/Ch02Ex49.sce new file mode 100755 index 000000000..9c266f6b4 --- /dev/null +++ b/1847/CH2/EX2.49/Ch02Ex49.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.49:: Page-2.35(2009) +clc; clear; +mu = 1.4; // Refractive index of the film +lambda = 5500e-008; // Wavelength of the light, cm +// As alpha = (delta_t)/x and x = 10*b; b = lambda/(2*mu*alpha), solving for dt +delta_t = 10*lambda/(2*mu); // Difference between the thicknesses of the films, cm + +printf("\nDifference between the thicknesses of the films = %4.2e cm", delta_t); + +// Result +// Difference between the thicknesses of the films = 1.96e-04 cm diff --git a/1847/CH2/EX2.5/Ch02Ex5.sce b/1847/CH2/EX2.5/Ch02Ex5.sce new file mode 100755 index 000000000..8528af407 --- /dev/null +++ b/1847/CH2/EX2.5/Ch02Ex5.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.5:: Page-2.10 (2009) +clc; clear; +lambda1 = 5890e-008; // Wavelength of D1 line of sodium, cm +lambda2 = 5896e-008; // Wavelength of D2 line of sodium, cm +D = 120; // Distance between source and the screen, cm +d = 0.025; // Separation between the slits, cm +n = 4; // Order of dark fringe +x1 = (2*n+1)*lambda1*D/(2*d); // Position of 4th dark fringe due to D1 line, cm +x2 = (2*n+1)*lambda2*D/(2*d); // Position of 4th dark fringe due to D2 line, cm +delta_x = x2-x1; // Fringe separation, cm + +printf("\nThe separation between fourth order dark fringes = %4.2e cm", x2-x1); + +// Result +// The separation between fourth order dark fringes = 1.30e-03 cm diff --git a/1847/CH2/EX2.50/Ch02Ex50.sce b/1847/CH2/EX2.50/Ch02Ex50.sce new file mode 100755 index 000000000..74a0c166a --- /dev/null +++ b/1847/CH2/EX2.50/Ch02Ex50.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.50:: Page-2.36(2009) +clc; clear; +mu = 1.6; // Refractive index of the film +lambda = 5500e-008; // Wavelength of the light, cm +b = 0.1; // Fringe width, cm +// As b = lambda/(2*mu*alpha), solving for alpha +alpha = lambda/(2*mu*b); // Angle of thin wedge shaped film, radian +printf("\nAngle of thin wedge shaped film = %3.1e radian", alpha); + +// Result +// Angle of thin wedge shaped film = 1.7e-04 radian diff --git a/1847/CH2/EX2.51/Ch02Ex51.sce b/1847/CH2/EX2.51/Ch02Ex51.sce new file mode 100755 index 000000000..baa510ab2 --- /dev/null +++ b/1847/CH2/EX2.51/Ch02Ex51.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.51:: Page-2.36(2009) +clc; clear; +mu = 1.5; // Refractive index of the film +b = 0.20; // Fringe width, cm +theta = 25/(60*60)*%pi/180; // Angle of the wedge, radian +// As b = lambda/(2*mu*theta), solving for lambda +lambda = 2*mu*b*theta; // Wavelength of light used to illuminate a wedge shaped film, cm + +printf("\nThe wavelength of light used to illuminate a wedge shaped film = %4d angstrom", lambda/1e-008); + +// Result +// The wavelength of light used to illuminate a wedge shaped film = 7272 angstrom +// The answer is given wrong in the textbook diff --git a/1847/CH2/EX2.52/Ch02Ex52.sce b/1847/CH2/EX2.52/Ch02Ex52.sce new file mode 100755 index 000000000..b624d0b68 --- /dev/null +++ b/1847/CH2/EX2.52/Ch02Ex52.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.52:: Page-2.36(2009) +clc; clear; +lambda = 5893e-010; // Wavelength of light used, m +mu = 1; // Refractive index of the glass +b = 1; // Assume fringe width to be unity, cm +// As b = l/20, solving for l +l = b*20; // Length of the film, m +// As b = lambda/(2*mu*theta) and theta = t/l, solving for t +t = lambda*l/(2*mu); // Thickness of the wire separating two glass surfaces, m + +printf("\nThe thickness of the wire separating two glass surfaces = %4.2e m", t); + +// Result +// The thickness of the wire separating two glass surfaces = 5.89e-06 m diff --git a/1847/CH2/EX2.53/Ch02Ex53.sce b/1847/CH2/EX2.53/Ch02Ex53.sce new file mode 100755 index 000000000..5cd4bd562 --- /dev/null +++ b/1847/CH2/EX2.53/Ch02Ex53.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.53:: Page-2.37(2009) +clc; clear; +mu = 1; // Refractive index of the air film +b = 1.5/25; // Fringe width, cm +lambda = 5893e-008; // Wavelength of light used to illuminate a wedge shaped film, cm +// As b = lambda/(2*mu*theta), solving for theta +theta = lambda/(2*mu*b); // Angle of the wedge, radian + +printf("\nThe angle of the wedge shaped air film = %5.3f degrees", theta*180/%pi); + +// Result +// The angle of the wedge shaped air film = 0.028 degrees diff --git a/1847/CH2/EX2.54/Ch02Ex54.sce b/1847/CH2/EX2.54/Ch02Ex54.sce new file mode 100755 index 000000000..9125e8dae --- /dev/null +++ b/1847/CH2/EX2.54/Ch02Ex54.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.54:: Page-2.37(2009) +clc; clear; +mu = 1.45; // Refractive index of the film +b = 1/10; // Fringe width, cm +lambda = 6600e-008; // Wavelength of light used to illuminate a wedge shaped film, cm +// As b = lambda/(2*mu*theta), solving for theta +theta = lambda/(2*mu*b); // Angle of the wedge, radian + +printf("\nThe acute angle of the wedge shaped film = %6.4f degrees", theta*180/%pi); + +// Result +// The acute angle of the wedge shaped film = 0.0130 degrees diff --git a/1847/CH2/EX2.55/Ch02Ex55.sce b/1847/CH2/EX2.55/Ch02Ex55.sce new file mode 100755 index 000000000..4569279ff --- /dev/null +++ b/1847/CH2/EX2.55/Ch02Ex55.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.55:: Page-2.46(2009) +clc; clear; +lambda1 = 6000e-008; // First visible wavelength, cm +lambda2 = 4500e-008; // Second visible wavelength, cm +R = 100; // Radius of curvature of the lens, cm +// As diameter of nth dark ring due to lambda1 is +// D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*lambda2, so that D_n^2 = D_nplus1^2 gives +n = lambda2/(lambda1-lambda2); // Order of interference for dark fringes +D_n = sqrt(4*n*R*lambda1); // Diameter of nth dark ring due to lambda1 + +printf("\nThe diameter of nth dark ring due to wavelength of %4d angstrom = %4.2f cm", lambda1/1e-008, D_n); + +// Result +// The diameter of nth dark ring due to wavelength of 6000 angstrom = 0.27 cm diff --git a/1847/CH2/EX2.56/Ch02Ex56.sce b/1847/CH2/EX2.56/Ch02Ex56.sce new file mode 100755 index 000000000..8dd15704d --- /dev/null +++ b/1847/CH2/EX2.56/Ch02Ex56.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.56:: Page-2.46(2009) +clc; clear; +R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm +D_n = 0.251; // Diameter of 3rd dark ring, cm +D_nplusp = 0.548; // Diameter of 9th dark ring, cm +n = 3; // Order of 3rd Newton ring +p = 9 - n; // Order of 6th Newton ring from 3rd ring +// As D_nplusp^2 - D_n^2 = 4*p*R*lambda, solving for lambda +lambda = (D_nplusp^2 - D_n^2)/(4*p*R); // Wavelength of light used +D_15 = sqrt(D_n^2+4*(15-n)*lambda*R); // Diameter of 15th dark ring, cm + +printf("\nThe diameter of 15th dark ring = %5.3f cm", D_15); + +// Result +// The diameter of 15th dark ring = 0.733 cm diff --git a/1847/CH2/EX2.57/Ch02Ex57.sce b/1847/CH2/EX2.57/Ch02Ex57.sce new file mode 100755 index 000000000..cf857619e --- /dev/null +++ b/1847/CH2/EX2.57/Ch02Ex57.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.57: : Page-2.47(2009) +clc; clear; +R = 1; // For simplicity assume radius of curvature of the lens to be unity, cm +n = 30; // Order of 3rd Newton ring +D_30 = 1; // Assume diameter of thirtieth ring to be unity, cm +// As D_30^2 = 4*n*R*lambda, solving for lambda +lambda = D_30^2/(4*n*R); // Wavelength of light used, cm +D_n = 3*D_30; // Diameter of nth dark ring having thrice the diameter of the thirtieth ring, cm +n = D_n^2/(4*R*lambda); // Order of a dark ring having thrice the diameter of the thirtieth ring + +printf("\nThe order of the dark ring having thrice the diameter of the thirtieth ring = %3d", n); + +// Result +// The order of the dark ring having thrice the diameter of the thirtieth ring = 270 diff --git a/1847/CH2/EX2.58/Ch02Ex58.sce b/1847/CH2/EX2.58/Ch02Ex58.sce new file mode 100755 index 000000000..5f0e8608f --- /dev/null +++ b/1847/CH2/EX2.58/Ch02Ex58.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.58:: Page-2.47(2009) +clc; clear; +n = 15; // Order of 15rd Newton ring +D_15 = 0.75; // Diameter of fifteenth dark ring, cm +lambda = 5890e-008; // Wavelength of light used, cm +// As D_15^2 = 4*15*R*lambda, solving for R +R = D_15^2/(4*15*lambda); // Radius of curvature of lens, cm +// For dark ring, 2*t = n*lambda, solving for t +t = n*lambda/2; // Thickness of air film, cm + +printf("\nThe radius of curvature of lens = %5.1f cm", R); +printf("\nThe thickness of air film = %3.1e cm", t); + +// Result +// The radius of curvature of lens = 159.2 cm +// The thickness of air film = 4.4e-004 cm diff --git a/1847/CH2/EX2.59/Ch02Ex59.sce b/1847/CH2/EX2.59/Ch02Ex59.sce new file mode 100755 index 000000000..b851b122c --- /dev/null +++ b/1847/CH2/EX2.59/Ch02Ex59.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.59:: Page-2.47(2009) +clc; clear; +D_15 = 1.62; // Diameter of 15th dark ring with air film, cm +D_15_prime = 1.47; // Diameter of 15th dark ring with liquid, cm +R = 1; // For simplicity assume radius of curvature to be unity, cm +n = 15; // Order of 15rd Newton ring +// As for ring with air film, D_15^2 = 4*15*R*lambda, solving for lambda +lambda = D_15^2/(4*15*R); // Wavelength of light used, cm +// As for ring with liquid, D_15_prime^2 = 4*15*R*lambda/mu, solving for mu +mu = 4*15*R*lambda/D_15_prime^2; // Refractive index of the liquid +printf("\nThe refractive index of the liquid = %4.2f", mu) + +// Result +// The refractive index of the liquid = 1.21 diff --git a/1847/CH2/EX2.6/Ch02Ex6.sce b/1847/CH2/EX2.6/Ch02Ex6.sce new file mode 100755 index 000000000..67b144ed8 --- /dev/null +++ b/1847/CH2/EX2.6/Ch02Ex6.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.6:: Page-2.11 (2009) +clc; clear; +lambda = 5500e-008; // Wavelength of light used, cm +Y1 = 10; // Distance of biprism from the source, cm +Y2 = 90; // Distance of biprism from the screen, cm +D = Y1 + Y2; // Distance between slits and the screen, cm +b = 8.526e-02; // Fringe width, cm +d = lambda*D/b; // Separation between the slits, cm + +printf("\nThe distance between two coherent sources = %4.2e cm", d); + +// Result +// The distance between two coherent sources = 6.45e-02 cm diff --git a/1847/CH2/EX2.60/Ch02Ex60.sce b/1847/CH2/EX2.60/Ch02Ex60.sce new file mode 100755 index 000000000..d6472b481 --- /dev/null +++ b/1847/CH2/EX2.60/Ch02Ex60.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.60:: Page-2.48(2009) +clc; clear; +D_10 = 0.48; // Diameter of 10th dark ring with air film, cm +D_3 = 0.291; // Diameter of 3rd dark ring with air film, cm +p = 7; // Order of the 10th ring next to the 3rd ring +R = 90; // Radius of curvature of the lens, cm +lambda = (D_10^2-D_3^2)/(4*p*R); // Wavelength of light used in Newton rings experiment + +printf("\nThe wavelength of light used in Newton rings experiment = %4d angstrom", lambda/1e-008); + +// Result +// The wavelength of light used in Newton rings experiment = 5782 angstrom diff --git a/1847/CH2/EX2.61/Ch02Ex61.sce b/1847/CH2/EX2.61/Ch02Ex61.sce new file mode 100755 index 000000000..2c35a0cb2 --- /dev/null +++ b/1847/CH2/EX2.61/Ch02Ex61.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.61:: Page-2.48(2009) +clc; clear; +R1 = 200; // Radius of curvature of the convex surface, cm +R2 = 250; // Radius of curvature of the concave surface, cm +lambda = 5500e-008; // Wavelength of light used, cm +n = 15; // Order of interfernce Newton ring +// As r_n^2*(1/R1-1/R2) = (2*n-1)*lambda/2, solving for r_n +r_n = sqrt((2*n-1)*lambda/(2*(1/R1-1/R2))); // Radius of nth ring, cm +D_15 = 2*r_n; // Daimeter of 15th bright ring, cm + +printf("\nThe daimeter of 15th bright ring = %4.2f cm", D_15); + +// Result +// The daimeter of 15th bright ring = 1.79 cm diff --git a/1847/CH2/EX2.62/Ch02Ex62.sce b/1847/CH2/EX2.62/Ch02Ex62.sce new file mode 100755 index 000000000..98ebd9c27 --- /dev/null +++ b/1847/CH2/EX2.62/Ch02Ex62.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.62:: Page-2.49(2009) +clc; clear; +R = 80; // Radius of curvature of the convex surface, cm +D5 = 0.192; // Diameter of 5th dark ring, cm +D25 = 0.555; // Diameter of 25th dark ring, cm +n = 5; // Order of interfernce Newton ring +P = 25 - n; +lambda = (D25^2 - D5^2)/(4*P*R); // Wavelength of light used, cm +printf("\nThe wavelength of light used = %5.3e cm", lambda); + +// Result +// The wavelength of light used = 4.237e-005 cm +// The expression for lambda is given wrong in the textbook but solved correctly diff --git a/1847/CH2/EX2.63/Ch02Ex63.sce b/1847/CH2/EX2.63/Ch02Ex63.sce new file mode 100755 index 000000000..03b413bf6 --- /dev/null +++ b/1847/CH2/EX2.63/Ch02Ex63.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.63:: Page-2.49(2009) +clc; clear; +R1 = 4; // Radius of curvature of the convex surface, m +R2 = 5; // Radius of curvature of the concave surface, m +lambda = 6600e-010; // Wavelength of light used, cm +n = 15; // Order of Newton ring +// As D_n^2*(1/R1-1/R2) = 4*n*lambda, solving for D_n +D_15 = sqrt(4*n*lambda/(1/R1-1/R2)); // Diameter of 15th dark ring, cm + +printf("\nThe diameter of %dth dark ring = %4.2e m", n, D_15); + +// Result +// The diameter of 15th dark ring = 2.81e-002 m +// The answer is given wrong in the textbook (the square root is not solved) diff --git a/1847/CH2/EX2.64/Ch02Ex64.sce b/1847/CH2/EX2.64/Ch02Ex64.sce new file mode 100755 index 000000000..ec9ea0b47 --- /dev/null +++ b/1847/CH2/EX2.64/Ch02Ex64.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.64:: Page-2.49(2009) +clc; clear; +lambda1 = 6000e-008; // First visible wavelength, cm +lambda2 = 4500e-008; // Second visible wavelength, cm +R = 120; // Radius of curvature of the lens, cm +// As diameter of nth dark ring due to lambda1 is +// D_n^2 = 4*n*R*lambda1 and D_nplus1^ = 4*(n+1)*R*lambda2, so that D_n^2 = D_nplus1^2 gives +n = lambda2/(lambda1-lambda2); // Order of interference for dark fringes +printf("\nThe value of n = %d", n); +n = 15; // Order of interference fringe +D_n = sqrt(4*n*R*lambda1); // Diameter of nth dark ring due to lambda1 +printf("\nThe diameter of 15th dark ring due to wavelength of %4d angstrom = %4.2f cm", lambda1/1e-008, D_n); + +// Result +// The value of n = 3 +// The diameter of 15th dark ring due to wavelength of 6000 angstrom = 0.66 cm diff --git a/1847/CH2/EX2.65/Ch02Ex65.sce b/1847/CH2/EX2.65/Ch02Ex65.sce new file mode 100755 index 000000000..216e00327 --- /dev/null +++ b/1847/CH2/EX2.65/Ch02Ex65.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.65:: Page-2.49(2009) +clc; clear; +lambda = 5896e-008; // Wavelength of light used, cm +R = 100; // Radius of curvature of the lens, cm +D10 = 0.4; // Diametre of 10th dark ring, cm +n = 10; // Order of Newton ring +// As for a dark ring, 2*mu*t = n*lambda and 2*t = (D10/2)^2/R, solving for mu +mu = 4*n*lambda*R/D10^2; // Refractive index of the liquid filled into container + +printf("\nThe refractive index of the liquid filled into container = %4.2f", mu); + +// Result +// The refractive index of the liquid filled into container = 1.47 diff --git a/1847/CH2/EX2.67/Ch02Ex67.sce b/1847/CH2/EX2.67/Ch02Ex67.sce new file mode 100755 index 000000000..04546946b --- /dev/null +++ b/1847/CH2/EX2.67/Ch02Ex67.sce @@ -0,0 +1,10 @@ +// Scilab Code Ex2.67:: Page-2.50(2009) +clc; clear; +Dn = 1.8; // Diameter of 15th dark ring, cm +Dn_prime = 1.67; // Diameter of 15th dark ring with liquid, cm +mu = (Dn/Dn_prime)^2; // Refractive index of the liquid + +printf("\nThe refractive index of the liquid = %4.2f", mu); + +// Result +// The refractive index of the liquid = 1.16 diff --git a/1847/CH2/EX2.68/Ch02Ex68.sce b/1847/CH2/EX2.68/Ch02Ex68.sce new file mode 100755 index 000000000..17f5740fe --- /dev/null +++ b/1847/CH2/EX2.68/Ch02Ex68.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex2.68:: Page-2.51(2009) +clc; clear; +R = 1; // For simplicity assume radius of curvature to be unity, cm +D8 = 0.45; // Diameter of 8th dark ring, cm +D15 = 0.81; // Diameter of 15th dark ring, cm +n = 8; // Order of 8th Newton ring +p = 7; // Order of 7th Newton ring after 8th ring +lambda = (D15^2-D8^2)/(4*p*R); // Wavelength of light used, cm +// As D18^2-D15^2 = 4*p*lambda*R +p = 3; // For 18th and 15th rings +D18 = sqrt(D15^2+4*p*lambda*R); // Diameter of 18th ring, cm + +printf("\nThe diameter of 18th dark ring = %6.4f cm", D18); + +// Result +// The diameter of 18th dark ring = 0.9222 cm diff --git a/1847/CH2/EX2.69/Ch02Ex69.sce b/1847/CH2/EX2.69/Ch02Ex69.sce new file mode 100755 index 000000000..52fe7d113 --- /dev/null +++ b/1847/CH2/EX2.69/Ch02Ex69.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.69:: Page-2.51(2009) +clc; clear; +R = 100; // Radius of curvature of plano-convex lens, cm +D15 = 0.590; // Diameter of 15th dark ring, cm +D5 = 0.336; // Diameter of 5th dark ring, cm +p = 10; // Order of 10th Newton ring after 5th ring +lambda = (D15^2-D5^2)/(4*p*R); // Wavelength of light used, cm + +printf("\nThe wavelength of light used = %4.0f ansgtrom", lambda/1e-008); + +// Result +// The wavelength of light used = 5880 ansgtrom diff --git a/1847/CH2/EX2.7/Ch02Ex7.sce b/1847/CH2/EX2.7/Ch02Ex7.sce new file mode 100755 index 000000000..9a8b84c26 --- /dev/null +++ b/1847/CH2/EX2.7/Ch02Ex7.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.7:: Page-2.11 (2009) +clc; clear; +alpha = %pi/180; // Acute angle of biprism, radian +mu = 1.5; // Refractive index of biprism +lambda = 5500e-008; // Wavelength of light used, cm +y1 = 5; // Distance of biprism from the source, cm +y2 = 75; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +d = 2*(mu-1)*alpha*y1; // Separation between the slits, cm +b = lambda*D/d; // Fringe width of the interfernce pattern due to biprism, cm + +printf("\nThe fringe width of the interfernce pattern due to biprism = %4.2e cm", b); + +// Result +// The fringe width of the interfernce pattern due to biprism = 5.04e-02 cm diff --git a/1847/CH2/EX2.70/Ch02Ex70.sce b/1847/CH2/EX2.70/Ch02Ex70.sce new file mode 100755 index 000000000..2ad10e75b --- /dev/null +++ b/1847/CH2/EX2.70/Ch02Ex70.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.70:: Page-2.57(2009) +clc; clear; +N = 250; // Number of fringes crossing the field of view +delta_x = 0.0595e-01; // Displacement in movable mirror, cm +// As N*lambda/2 = delta_x, solving for lambda +lambda = 2*delta_x/N; // Wavelength of light used, cm + +printf("\nThe wavelength of monochromatic light used = %4.0f ansgtrom", lambda/1e-008); + +// Result +// The wavelength of monochromatic light used = 4760 ansgtrom +// Answer is given wrong in the textbook diff --git a/1847/CH2/EX2.71/Ch02Ex71.sce b/1847/CH2/EX2.71/Ch02Ex71.sce new file mode 100755 index 000000000..c84427e61 --- /dev/null +++ b/1847/CH2/EX2.71/Ch02Ex71.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex2.71:: Page-2.58(2009) +clc; clear; +delta_x = 0.02559e-01; // Displacement in movable mirror, cm +lambda = 5890e-008; // Wavelength of light used, cm +// As N*lambda/2 = delta_x, solving for N +N = 2*delta_x/lambda; // Number of fringes crossing the field of view + +printf("\nThe number of fringes that passes across the cross wire of telescope = %2d", ceil(N)); + +// Result +// The number of fringes that passes across the cross wire of telescope = 87 diff --git a/1847/CH2/EX2.72/Ch02Ex72.sce b/1847/CH2/EX2.72/Ch02Ex72.sce new file mode 100755 index 000000000..0aa30aa44 --- /dev/null +++ b/1847/CH2/EX2.72/Ch02Ex72.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.72:: Page-2.58(2009) +clc; clear; +lambda1 = 5890e-008; // Wavelength corresponding to the D1 line, cm +lambda2 = 5896e-008; // Wavelength corresponding to the D2 line, cm +delta_lambda = lambda2 - lambda1; // Difference in the wavelengths, cm +// As delta_lambda = lambda1*lambda2/(2*x), solving for x +x = lambda1*lambda2/(2*(lambda2-lambda1)); // Distance between two successive positions of movable mirror + +printf("\nThe distance between two successive positions of movable mirror = %3.1e cm", x); + +// Result +// The distance between two successive positions of movable mirror = 2.9e-002 diff --git a/1847/CH2/EX2.73/Ch02Ex73.sce b/1847/CH2/EX2.73/Ch02Ex73.sce new file mode 100755 index 000000000..5a4a6554d --- /dev/null +++ b/1847/CH2/EX2.73/Ch02Ex73.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.73:: Page-2.58(2009) +clc; clear; +N = 550; // Number of fringes crossing the field of view +lambda = 5500e-008; // Wavelength of light used, cm +mu = 1.5; // Refractive index of the glass slab +// As 2*(mu-1)*t = N*lambda, solving for t +t = N*lambda/(2*(mu-1)); // Thickness of the transparent glass film + +printf("\nThe distance between two successive positions of movable mirror = %3.1e cm", t); + +// Result +// The distance between two successive positions of movable mirror = 3.0e-002 cm diff --git a/1847/CH2/EX2.8/Ch02Ex8.sce b/1847/CH2/EX2.8/Ch02Ex8.sce new file mode 100755 index 000000000..e9197dc4d --- /dev/null +++ b/1847/CH2/EX2.8/Ch02Ex8.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex2.8:: Page-2.11 (2009) +clc; clear; +mu = 1.5; // Refractive index of biprism +lambda = 5500e-008; // Wavelength of light used, cm +y1 = 5; // Distance of biprism from the source, cm +y2 = 95; // Distance of biprism from the screen, cm +D = y1 + y2; // Distance between slits and the screen, cm +b = 0.025; // Fringe width of the interfernce pattern due to biprism, cm +// As d = 2*(mu-1)*alpha*y1, solving for alpha +alpha = lambda*D/(b*2*(mu-1)*y1) // Angle of vertex of the biprism, radian + +printf("\nThe angle of vertex of the biprism = %3.1e rad", alpha); + +// Result +// The angle of vertex of the biprism = 4.4e-02 rad diff --git a/1847/CH2/EX2.9/Ch02Ex9.sce b/1847/CH2/EX2.9/Ch02Ex9.sce new file mode 100755 index 000000000..b444e31fa --- /dev/null +++ b/1847/CH2/EX2.9/Ch02Ex9.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.9:: Page-2.12 (2009) +clc; clear; +n1 = 69; // Number of interference fringes obtained with yellow wavelength +lambda1 = 5893e-008; // Wavelength of yellow light used, cm +lambda2 = 5461e-008; // Wavelength of green light used, cm +// As n*lambda = l*d/D = constant, therefore +n2 = n1*lambda1/lambda2; // Number of interference fringes for green wavelength + +printf("\nThe number of interference fringes for changed wavelength = %2d", ceil(n2)); + +// Result +// The number of interference fringes for changed wavelength = 75 -- cgit