From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1775/CH2/EX2.4/Chapter2_Example4.sce | 37 ++++++++++++++++++++++++++++++++++++ 1 file changed, 37 insertions(+) create mode 100755 1775/CH2/EX2.4/Chapter2_Example4.sce (limited to '1775/CH2/EX2.4/Chapter2_Example4.sce') diff --git a/1775/CH2/EX2.4/Chapter2_Example4.sce b/1775/CH2/EX2.4/Chapter2_Example4.sce new file mode 100755 index 000000000..3002c430c --- /dev/null +++ b/1775/CH2/EX2.4/Chapter2_Example4.sce @@ -0,0 +1,37 @@ +//Chapter-2, Illustration 4, Page 58 +//Title: Gas Power Cycles +//============================================================================= +clc +clear + +//INPUT DATA +rv=9.5;//Compression ratio +P1=100;//Air pressure in kPa +T1=290;//Air temperature in K +V1=600*(10^-6);//Volume of air in m^3 +T4=800;//Final temperature in K +R=287;//Universal gas constan in J/kg.K +Cv=0.718;//Specific heat at constant volume in kJ/kg.K +y=1.4;//Ratio of specific heats + +//CALCULATIONS +T3=T4*(rv^(y-1));//Temperature at the end of constant volume heat addition in K +P2=P1*(rv^y);//Pressure at point 2 in kPa +T2=T1*(rv^(y-1));//Temperature at point 2 in K +P3=P2*(T3/T2);//Pressure at point 3 in kPa +m=(P1*1000*V1)/(R*T1);//Specific mass in kg/s +Q=m*Cv*(T3-T2);//Heat transferred in kJ +n=(1-(1/rv^(y-1)))*100;//Thermal efficiency +Wnet=(n*Q)/100;//Net workdone in kJ +MEP=Wnet/(V1*(1-(1/rv)));//Mean effective pressure in kPa + +//OUTPUT +mprintf('Maximum pressure of the cycle is %3.2f kPa \n Maximum temperature of the cycle is %3.1f K \n Amount of heat transferred is %3.2f kJ \n Thermal efficiency is %3.1f percent \n Mean effective pressure is %3.1f kPa',P3,T3,Q,n,MEP) + + + + + + + +//==============================END OF PROGRAM================================= -- cgit