From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1775/CH2/EX2.22/Chapter2_Example22.sce | 45 ++++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100755 1775/CH2/EX2.22/Chapter2_Example22.sce (limited to '1775/CH2/EX2.22') diff --git a/1775/CH2/EX2.22/Chapter2_Example22.sce b/1775/CH2/EX2.22/Chapter2_Example22.sce new file mode 100755 index 000000000..cc6ebb314 --- /dev/null +++ b/1775/CH2/EX2.22/Chapter2_Example22.sce @@ -0,0 +1,45 @@ +//Chapter-2, Illustration 22, Page 81 +//Title: Gas Power Cycles +//============================================================================= +clc +clear + +//INPUT DATA +C1=280;//Velocity of aircraft in m/s +P1=48;//Pressure at point 1 kPa +T1=260;//Temperature at point 1 in K +rp=13;//Pressure ratio +T4=1300;//Temperature at point 4 in K +Cp=1005;//Specific heat at constant pressure in J/kg +y=1.4;//Ratio of specific heats + +//CALCULATIONS +x=(y-1)/y;//Ratio +T2=T1+((C1^2)/(2*Cp));//Temperature at point 2 in K +P2=P1*((T2/T1)^(1/x));//Pressure at point 2 in kPa +P3=rp*P2;//Pressure at point 3 in kPa +P4=P3;//Pressure at point 4 in kPa +T3=T2*(rp^x);//Temperature at point 3 in K +T5=T4-T3+T2;//Temperature at point 5 in K +P5=P4*((T5/T4)^(1/x));//Pressure at point 5 in kPa +P6=P1;//Pressure at point 6 in kPa +T6=T5*((P6/P5)^x);//Temperature at point 6 in K +C6=sqrt(2*Cp*(T5-T6));//Velocity of air at nozzle exit in m/s +W=(C6-C1)*C1;//Propulsive power in J/kg +Q=Cp*(T4-T3);//Total heat transfer rate in J/kg +nP=(W/Q)*100;//Propulsive efficiency + +//OUTPUT +mprintf('Pressure at the turbine exit is %3.1f kPa \n Velocity of exhaust gases are %3.1f m/s \n Propulsive efficiency is %3.1f percent',P5,C6,nP) + + + + + + + + + + + +//==============================END OF PROGRAM================================= -- cgit