From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1757/CH14/EX14.10/EX14_10.sce | 70 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 70 insertions(+) create mode 100755 1757/CH14/EX14.10/EX14_10.sce (limited to '1757/CH14/EX14.10') diff --git a/1757/CH14/EX14.10/EX14_10.sce b/1757/CH14/EX14.10/EX14_10.sce new file mode 100755 index 000000000..f126d03e9 --- /dev/null +++ b/1757/CH14/EX14.10/EX14_10.sce @@ -0,0 +1,70 @@ + +// Example14.10 // Design a video amplifier of IC 1550 circuit +clc; +clear; +close; +Vcc = 12 ; // V +Av = -10 ; +Vagc = 0 ; // at bandwidth of 20 MHz +hfe = 50 ; // forward emitter parameter +rbb = 25 ; // ohm // base resistor +Cs = 1*10^-12 ; // F // source capacitor +Cl = 1*10^-12 ; // F // load capacitor +Ie1 = 1*10^-3 ; // A // emitter current of Q1 +f = 1000*10^6 ; // Hz +Vt = 52*10^-3 ; +Vt1 = 0.026 ; + +// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3 +// i.e Ic1=Ie1=Ie3 +Ie3 = 1*10^-3 ; // A // emitter current of Q3 +Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1 + +// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite +re2 = %inf ; + +// emitter resistor of Q3 +re3 = (Vt/Ie1); +disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ( at temperature 25 degree celsius) '); + +// the trans conductance of transistor is +gm = (Ie1/Vt1); +disp('The trans conductance of transistor is = '+string(gm*1000)+' mA/V '); // Round Off Error + +// the base emitter resistor rbe +rbe = (hfe/gm); +disp('The base emitter resistor rbe is = '+string(rbe/1000)+' K ohm '); // Round Off Error + +// the emitter capacitor Ce +Ce = (gm/(2*%pi*f)); +disp('The emitter capacitor Ce = '+string(Ce)+' F '); // Round Off Error + +// the voltage gain of video amplifier is +// Av = (Vo/Vin) ; +// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) + // At Avgc = 0 i.e s=0 in the above Av equation +alpha3 = 1 ; +s = 0 ; +// Rl = -((alpha3*gm)/(rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av))); + +// After solving above equation for Rl We get Rl Equation as +Rl = 10/(37.8*10^-3); +disp('The value of resistance RL is = '+string(Rl)+' ohm '); + +// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency +Rl = 675 ; +// fa = 1/(2*%pi*Rl*(Cs+Cl)); +// after putting value of Rl ,Cs and Cl we get +fa = 1/(2*3.14*264.55*1*10^-12); +disp('The pole frequency fa is = '+string(fa*10^-3/1000)+' M Hz '); // Round Off Error + + +//fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe))); +// after putting value of Ce rbb and rbe we get +fb = 1/(2*%pi*6.05*10^-12*24.5); +disp('The pole frequency fb is = '+string(fb*10^-3/1000)+' M Hz '); + +fc = 1/(2*%pi*Cs*re3); +disp('The pole frequency fc is = '+string(fc*10^-3/1000)+' M Hz '); + +disp(' Hence fa is a dominant pole frequency '); -- cgit