From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1736/CH2/EX2.1/Ch02Ex1.sce | 12 ++++++++++++ 1736/CH2/EX2.2/Ch02Ex2.sce | 14 ++++++++++++++ 1736/CH2/EX2.3/Ch02Ex3.sce | 14 ++++++++++++++ 1736/CH2/EX2.4/Ch02Ex4.sce | 14 ++++++++++++++ 1736/CH2/EX2.5/Ch02Ex5.sce | 14 ++++++++++++++ 1736/CH2/EX2.6/Ch02Ex6.sce | 13 +++++++++++++ 1736/CH2/EX2.7/Ch02Ex7.sce | 8 ++++++++ 1736/CH2/EX2.8/Ch02Ex8.sce | 20 ++++++++++++++++++++ 8 files changed, 109 insertions(+) create mode 100755 1736/CH2/EX2.1/Ch02Ex1.sce create mode 100755 1736/CH2/EX2.2/Ch02Ex2.sce create mode 100755 1736/CH2/EX2.3/Ch02Ex3.sce create mode 100755 1736/CH2/EX2.4/Ch02Ex4.sce create mode 100755 1736/CH2/EX2.5/Ch02Ex5.sce create mode 100755 1736/CH2/EX2.6/Ch02Ex6.sce create mode 100755 1736/CH2/EX2.7/Ch02Ex7.sce create mode 100755 1736/CH2/EX2.8/Ch02Ex8.sce (limited to '1736/CH2') diff --git a/1736/CH2/EX2.1/Ch02Ex1.sce b/1736/CH2/EX2.1/Ch02Ex1.sce new file mode 100755 index 000000000..b67b2444d --- /dev/null +++ b/1736/CH2/EX2.1/Ch02Ex1.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex2.1 : Page-62 (2006) +clc; clear; +epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m +e = 1.6e-019; // Energy equivalent of 1 eV, eV/J +r = 3.147e-010; // Nearest neighbour distance for KCl, m +n = 9.1; // Repulsive exponent of KCl +A = 1.748; // Madelung constant for lattice binding energy +E = A*e^2/(4*%pi*epsilon_0*r)*(n-1)/n/e; // Binding energy of KCl, eV +printf("\nThe binding energy of KCl = %5.3f eV", E); + +// Result +// The binding energy of KCl = 7.110 eV diff --git a/1736/CH2/EX2.2/Ch02Ex2.sce b/1736/CH2/EX2.2/Ch02Ex2.sce new file mode 100755 index 000000000..72f7ccd63 --- /dev/null +++ b/1736/CH2/EX2.2/Ch02Ex2.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.2 : Page-62 (2006) +clc; clear; +epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m +N = 6.023e+023; // Avogadro's number +e = 1.6e-019; // Energy equivalent of 1 eV, eV/J +a0 = 5.63e-010; // Lattice parameter of NaCl, m +r0 = a0/2; // Nearest neighbour distance for NaCl, m +n = 8.4; // Repulsive exponent of NaCl +A = 1.748; // Madelung constant for lattice binding energy +E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n/e; // Binding energy of NaCl, eV +printf("\nThe binding energy of NaCl = %5.3f kcal/mol", E*N*e/(4.186*1e+03)); + +// Result +// The binding energy of NaCl = 181.101 eV diff --git a/1736/CH2/EX2.3/Ch02Ex3.sce b/1736/CH2/EX2.3/Ch02Ex3.sce new file mode 100755 index 000000000..a4490246a --- /dev/null +++ b/1736/CH2/EX2.3/Ch02Ex3.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.3 : Page-62 (2006) +clc; clear; +epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m +N = 6.023e+023; // Avogadro's number +e = 1.6e-019; // Energy equivalent of 1 eV, eV/J +E = 162.9e+03; // Binding energy of KCl, cal/mol +n = 8.6; // Repulsive exponent of KCl +A = 1.747; // Madelung constant for lattice binding energy +// As lattice binding energy, E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0 +r0 = A*N*e^2/(4*%pi*epsilon_0*E*4.186)*(n-1)/n; // Nearest neighbour distance of KCl, m +printf("\nThe nearest neighbour distance of KCl = %4.2f angstorm", r0/1e-010); + +// Result +// The nearest neighbour distance of KCl = 3.14 angstorm diff --git a/1736/CH2/EX2.4/Ch02Ex4.sce b/1736/CH2/EX2.4/Ch02Ex4.sce new file mode 100755 index 000000000..850c34fff --- /dev/null +++ b/1736/CH2/EX2.4/Ch02Ex4.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.4 : Page-63 (2006) +clc; clear; +epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m +N = 6.023e+023; // Avogadro's number +e = 1.6e-019; // Energy equivalent of 1 eV, eV/J +E = 152e+03; // Binding energy of CsCl, cal/mol +n = 10.6; // Repulsive exponent of CsCl +A = 1.763; // Madelung constant for lattice binding energy +// As lattice binding energy, E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for r0 +r0 = A*N*e^2/(4*%pi*epsilon_0*E*4.186)*(n-1)/n; // Nearest neighbour distance of CsCl, m +printf("\nThe nearest neighbour distance of CsCl = %4.2f angstrom", r0/1e-010); + +// Result +// The nearest neighbour distance of CsCl = 3.48 angstrom diff --git a/1736/CH2/EX2.5/Ch02Ex5.sce b/1736/CH2/EX2.5/Ch02Ex5.sce new file mode 100755 index 000000000..873fcc722 --- /dev/null +++ b/1736/CH2/EX2.5/Ch02Ex5.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex2.5 : Page-63 (2006) +clc; clear; +epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m +N = 6.023e+023; // Avogadro's number +e = 1.6e-019; // Energy equivalent of 1 eV, eV/J +r0 = 6.46e-010; // Nearest neighbour distance of NaI +E = 157.1e+03; // Binding energy of NaI, cal/mol +A = 1.747; // Madelung constant for lattice binding energy +// As lattice binding energy, E = -A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n, solving for n +n = 1/(1+(4.186*E*4*%pi*epsilon_0*r0)/(N*A*e^2)); // Repulsive exponent of NaI +printf("\nThe repulsive exponent of NaI = %5.3f", n); + +// Result +// The repulsive exponent of NaI = 0.363 diff --git a/1736/CH2/EX2.6/Ch02Ex6.sce b/1736/CH2/EX2.6/Ch02Ex6.sce new file mode 100755 index 000000000..fb365a0f8 --- /dev/null +++ b/1736/CH2/EX2.6/Ch02Ex6.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex2.6 : Page-63 (2006) +clc; clear; +e = 1.6e-019; // Energy equivalent of 1 eV, eV/J +a0 = 2.815e-010; // Nearest neighbour distance of solid +A = 1.747; // Madelung constant for lattice binding energy +n = 8.6; // The repulsive exponent of solid +c = 2; // Structural factor for rocksalt +// As n = 1 + (9*c*a0^4)/(K0*e^2*A), solving for K0 +K0 = 9*c*a0^4/((n-1)*e^2*A); // Compressibility of solid, metre square per newton +printf("\nThe compressibility of the solid = %5.3e metre square per newton", K0); + +// Result +// The compressibility of the solid = 3.325e-001 metre square per newton (Answer Given in the textbook is wrong) diff --git a/1736/CH2/EX2.7/Ch02Ex7.sce b/1736/CH2/EX2.7/Ch02Ex7.sce new file mode 100755 index 000000000..af0dee29d --- /dev/null +++ b/1736/CH2/EX2.7/Ch02Ex7.sce @@ -0,0 +1,8 @@ +// Scilab Code Ex2.7 : Page-69 (2006) +clc; clear; +chi_diff = 1; // Electronegativity difference between the constituent of elements of solid +percent_ion = 100*(1-exp(-(0.25*chi_diff^2))); // Percentage ionic character present in solid given by Pauling +printf("\nThe percentage ionic character present in solid = %2d percent ", percent_ion); + +// Result +// The percentage ionic character present in solid = 22 percent diff --git a/1736/CH2/EX2.8/Ch02Ex8.sce b/1736/CH2/EX2.8/Ch02Ex8.sce new file mode 100755 index 000000000..980142adc --- /dev/null +++ b/1736/CH2/EX2.8/Ch02Ex8.sce @@ -0,0 +1,20 @@ +// Scilab Code Ex2.8 : Page-69 (2006) +clc; clear; +A = cell(2,3); // Declare a cell of 3X2 +A(1,1).entries = 'GaAs'; // First compound name +A(1,2).entries = 4.3; // Homopolar gap of first compound, eV +A(1,3).entries = 2.90; // Ionic gap of first compound, eV +A(2,1).entries = 'CdTe'; // Second compound name +A(2,2).entries = 3.08; // Homopolar gap of second compound, eV +A(2,3).entries = 4.90; // Ionic gap of second compound, eV +printf("\nThe fractional ionicity of the compounds are given in the last column of the following table:"); +printf("\nCompound Eh C fi"); +for i = 1:1:2 +printf("\n%s %3.1f %4.2f %5.3f", A(i,1).entries, A(i,2).entries, A(i,3).entries, A(i,3).entries^2/(A(i,2).entries^2+A(i,3).entries^2)); // Philips and Vanvechten model of fractional ionicity +end + +// Result +// The fractional ionicity of the compounds are given in the last column of the following table: +// Compound Eh C fi +// GaAs 4.3 2.90 0.313 +// sCdTe 3.1 4.90 0.717 -- cgit