From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1523/CH12/EX12.9/ex12_9.sce | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) create mode 100755 1523/CH12/EX12.9/ex12_9.sce (limited to '1523/CH12/EX12.9') diff --git a/1523/CH12/EX12.9/ex12_9.sce b/1523/CH12/EX12.9/ex12_9.sce new file mode 100755 index 000000000..f1daea1f8 --- /dev/null +++ b/1523/CH12/EX12.9/ex12_9.sce @@ -0,0 +1,19 @@ +// Network Synthesis : example 12.9 : (pg 12.6) +s=poly(0,'s'); +p1=((s^5)+(3*(s^3))+(2*s)); +p2=((5*(s^4))+9*(s^2)+2); +[r,q]=pdiv(p1,p2); +[r1,q1]=pdiv(p2,r); +[r2,q2]=pdiv(r,r1); +[r3,q3]=pdiv(r1,r2); +[r4,q4]=pdiv(r2,r3); +printf("\n P(s) = ((s^5)+(3*(s^3))+(2*s))"); +printf("\n d/ds.P(s)= ((5*(s^4))+9*(s^2)+2)"); +printf("\nQ(s)=P(s)/d/ds.P(s)"); +// values of quotients in continued fraction expansion +disp(q); +disp(q1); +disp(q2); +disp(q3); +disp(q4); +printf("\nSince all the quotient terms are positive, P(s) is hurwitz"); -- cgit