From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1445/CH8/EX8.32/Ex8_32.sce | 95 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 95 insertions(+) create mode 100644 1445/CH8/EX8.32/Ex8_32.sce (limited to '1445/CH8/EX8.32/Ex8_32.sce') diff --git a/1445/CH8/EX8.32/Ex8_32.sce b/1445/CH8/EX8.32/Ex8_32.sce new file mode 100644 index 000000000..ff37b6767 --- /dev/null +++ b/1445/CH8/EX8.32/Ex8_32.sce @@ -0,0 +1,95 @@ +//CHAPTER 8- DIRECT CURRENT MACHINES +//Example 32 + +disp("CHAPTER 8"); +disp("EXAMPLE 32"); + +//250 V series motor at 1000 rpm +//VARIABLE INITIALIZATION +v_t=250; //in Volts +I=20; //in Amperes +N1=1000; //in rpm +P=4; //number of poles +r_p=0.05; //resistance of field coil on each pole in Ohms +r_a=0.2; //in Ohms + +//SOLUTION + +r_se=P*r_p; // series field resistance +r_m=r_a+r_se; //resistance of motor +E_b1=v_t-(I*r_m); // back emf +//Torque t1 dir prop phi1.Ia +//=> since phi dir prop Ia +//=> torque dir prop Ia^2 +T1=I^2; // torque + +//solution (a) +//10 ohm resistance in parallel with armature +//let I be input currnet then, drop in series field = r_a.I +//Voltage across the terminals = V = Vt-r_a.I +//=> current in 10 ohm resistance (=r) = (Vt-r_a.I)/r (eq 1) +// now, Armature current Ia +// Ia= I - (Vt-r_a.I)/r (eq 2) +//Torque developed t2 dir prop phi2.Ia +//=> since phi dir prop I +//=> torque dir prop I.Ia +//However, T2=T1, as torque developed in two cases is equal +//=> I.Ia = T1 +//substituting value of Ia from eq 2, we get +//I.(I - (Vt-r_a.I)/r) =T1 +//=>I. (I.r+r_a.I -Vt)/r = T1 +//=> (r+r_a).I^2 -Vt.I =T1.r +//=> (r+r_a).I^2 -Vt.I - T1.r =0 +//solving the quadratic equation directly, +r=10; //in Ohms +a=10.2; //(r+r_a). value 1.02 in text book, as it was divided by r=10 +b=-250; //Vt ; -25 in text book, as it was divided by r=10 +c=-4000; // T1.r; 400 in text book, as it was not multiplied by r=10 +D=b^2-(4*a*c); +x1=(-b+sqrt(D))/(2*a); +x2=(-b-sqrt(D))/(2*a); +//to extract the positive root out of the two +if (x1>0 & x2<0) +I1=x1; +else (x1<0 & x2>0) +I1=x2; +end; +I_a=((10.2*I1)-v_t)/r; // armature current +E_b2=v_t-(I_a*r_a); // back emf +N2=((E_b2/E_b1)*I*N1)/I1; +N2=round(N2); //to round off the value +disp(sprintf("(a) The speed with 10 Ω resistance in parallel with the armature is %d rpm",N2)); + +//solution (b) +//0.5 ohmic diverter resistance +//resistance in the field winding = 0.5/(0.5+r_a) +// since r_a=0.2,the value becomes 0.5/0.7 = 5/7 +//Torque T3 dir prop phi3.Ia +// => dir prop 5/7 . I. I. +//=> dir prop 5/7 I^2 +//since T3=T1 +//=> 5/7 I^2= T1 +//=> 5/7. I^2 - T1=0 +//solving the quadratic equation directly,with new values +a=5/7; +b=0; +c=-400; +D=b^2-(4*a*c); +y1=(-b+sqrt(D))/(2*a); +y2=(-b-sqrt(D))/(2*a); +//to extract the positive root out of the two +if (y1>0 & y2<0) +I2=y1; +else (y1<0 & y2>0) +I2=y2; +end; +E_b3=v_t-(I2*r_a); // back emf +N3=((E_b3/E_b1)*I*N1)/(I2*a); +N3=round(N3); //to round off the value +disp(sprintf("(b) The speed with 0.5 Ω resistance in parallel with series field is %d rpm",N3)); + +//The answers are slightly different due to the precision of floating point numbers + +//END + + -- cgit