From 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 Mon Sep 17 00:00:00 2001 From: prashantsinalkar Date: Tue, 10 Oct 2017 12:27:19 +0530 Subject: initial commit / add all books --- 1430/CH15/EX15.9/exa15_9.jpg | Bin 0 -> 49281 bytes 1430/CH15/EX15.9/exa15_9.sce | 26 ++++++++++++++++++++++++++ 2 files changed, 26 insertions(+) create mode 100644 1430/CH15/EX15.9/exa15_9.jpg create mode 100644 1430/CH15/EX15.9/exa15_9.sce (limited to '1430/CH15/EX15.9') diff --git a/1430/CH15/EX15.9/exa15_9.jpg b/1430/CH15/EX15.9/exa15_9.jpg new file mode 100644 index 000000000..4c2f22114 Binary files /dev/null and b/1430/CH15/EX15.9/exa15_9.jpg differ diff --git a/1430/CH15/EX15.9/exa15_9.sce b/1430/CH15/EX15.9/exa15_9.sce new file mode 100644 index 000000000..d7d059c5f --- /dev/null +++ b/1430/CH15/EX15.9/exa15_9.sce @@ -0,0 +1,26 @@ +// Example 15.9 +// Calculating the Zero-State Response +s=%s; +t=0:0.001:5; +// From Transfer function Matrix equation i.e. +//P(s)*H(s)=C*adj[s*I-A]*B+P(s)*[D+s*E] +// Substituting various Matrices into the above equations we get +P_s= (s+3)*(s+5) +W=[6,10;0,-2]*[s,-5;3,s+8]*[-8,0;3,1]+(P_s)*[0,0;2,0]; +H_s=W/P_s; + +//To obtain the Zero-state outputs produced by x1(t)=u(t) and x2(t)=0 +X_s=[1/s;0]; // Laplace transform of input matrix +Y_s=H_s*X_s; +// Writing down two elements of Y_s +Y_1=-18/(s*(s+3)); +// taking inverse laplace of Y_1 +y1= -6+6*exp(-3*t); +Y_2=(2*s^2+10*s+30)/(s*(s+3)*(s+5)); +// taking inverse laplace of Y_2 +y2=2-3*exp(-3*t)+exp(-5*t); +plot(t,y1,'-r',t,y2,'-g') +xlabel('t') +ylabel('y(t)') +title('Signal Waveform') +h1=legend(['y1';'y2']); -- cgit