From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1309/CH6/EX6.3/Figure6_3.jpg | Bin 0 -> 72708 bytes 1309/CH6/EX6.3/Result6_3.pdf | Bin 0 -> 95839 bytes 1309/CH6/EX6.3/ch6_3.sce | 80 +++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 80 insertions(+) create mode 100755 1309/CH6/EX6.3/Figure6_3.jpg create mode 100755 1309/CH6/EX6.3/Result6_3.pdf create mode 100755 1309/CH6/EX6.3/ch6_3.sce (limited to '1309/CH6/EX6.3') diff --git a/1309/CH6/EX6.3/Figure6_3.jpg b/1309/CH6/EX6.3/Figure6_3.jpg new file mode 100755 index 000000000..02b73a4d5 Binary files /dev/null and b/1309/CH6/EX6.3/Figure6_3.jpg differ diff --git a/1309/CH6/EX6.3/Result6_3.pdf b/1309/CH6/EX6.3/Result6_3.pdf new file mode 100755 index 000000000..b1e59a41f Binary files /dev/null and b/1309/CH6/EX6.3/Result6_3.pdf differ diff --git a/1309/CH6/EX6.3/ch6_3.sce b/1309/CH6/EX6.3/ch6_3.sce new file mode 100755 index 000000000..87c08de9b --- /dev/null +++ b/1309/CH6/EX6.3/ch6_3.sce @@ -0,0 +1,80 @@ +clc; +clear; +printf("\t\t\tChapter6_example3\n\n\n"); +// Determination of the variation of wall temperature with length up to the point where the flow becomes fully developed. +// properties of milk +kf=0.6; // thermal conductivity in W/(m-K) +cp=3.85*1000; // specific heat in J/(kg*K) +rou=1030; // density in kg/m^3 +mu=2.12e3; // viscosity in N s/m^2 +// specifications of 1/2 standard type K tubing from appendix table F2 +OD=1.588/100; // outer diameter in m +ID=1.340/100; // inner diameter in m +A=1.410e-4 // cross sectional area in m^2 +rou=1030; +V=0.1; +mu=2.12e-3 +// determination of flow regime +Re=rou*V*ID/(mu); +printf("\nThe Reynolds Number is %d",Re); +// The flow being laminar, the hydrodynamic entry length is calculated as follows +ze=0.05*ID*Re; +printf("\nThe hydrodynamic entry length is %.1f cm",ze*100); +Tbo=71.7; // final temperature in degree celsius +Tbi=20; // initial temperature in degree celsius +L=6; // heating length in m +qw=rou*V*ID*cp*(Tbo-Tbi)/(4*L); +printf("\nThe heat flux is %d W/sq.m",qw); +q=qw*%pi*ID*L; +printf("\nThe power required is %.1f W",q); +printf("\nA 3000 W heater would suffice"); +Pr=(cp*mu)/kf; // Prandtl Number +printf("\nThe Prandtl Number is %.1f",Pr); +zf=0.05*ID*Re*Pr; +printf("\nThe length required for flow to be thermally developed is %.1f m",zf); +// calculations of wall temperature of the tube +reciprocal_Gz=[0.002 0.004 0.01 0.04 0.05];// values of 1/Gz taken +[n m]=size(reciprocal_Gz); +Nu=[12 10 7.5 5.2 4.5]; //Enter the corresponding value of Nusselts Number from figure 6.8 +for i=1:m + z(i)=ID*Re*Pr*reciprocal_Gz(i); + h(i)=kf*Nu(i)/ID; + Tbz(i)=20+(8.617*z(i)); + Twz(i)=Tbz(i)+(11447/h(i)); +end +printf("\nSummary of Calculations to Find the Wall Temperature of the Tube"); +printf("\n\t1/Gz\t\tNu\t\tz (m)\t\th W/(sq.m.K)\t\tTbz (degree celsius)\t\tTwz (degree celsius)"); +for i=1:m +printf("\n\t%.3f\t\t%.1f\t\t%.3f\t\t%d\t\t\t%.1f\t\t\t\t%.1f",reciprocal_Gz(i),Nu(i),z(i),h(i),Tbz(i),Twz(i)); +end +subplot(211); +plot(z,Tbz,'r--d',z,Twz,'r-'); // our first figure +a1 = gca(); +h1=legend(["Tbz";"Twz"]); +subplot(212) +plot(z,h, 'o--'); // our second figure +hl=legend(['h'],2); +title('Variation of temperature and local convection coefficient with axial distance for the constant- wall-flux tube'); +a2 = gca(); +a2.axes_visible = ["off", "on","on"]; +a2.y_location ="right"; + +a1.axes_bounds=[0 0 1 1]; // modify the first figure to occupy the whole area +a2.axes_bounds=[0 0 1 1]; // modify the second figure to occupy the whole area too + +a1.data_bounds=[0,0;6,140]; +a2.data_bounds=[0,0;6,700]; + +a1.x_ticks = tlist(["ticks", "locations", "labels"], (0:6)', ["0";"1";"2";"3";"4";"5";"6"]); +a1.x_label +a1.y_label +x_label=a1.x_label; +x_label.text=" z,m" +a2.x_label +a2.y_label +y_label=a1.y_label; +y_label.text="T, degree celsius" +y_label=a2.y_label; +y_label.text="h, W/(sq.m.K)" +xgrid(1); +a2.filled = "off"; -- cgit