From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1309/CH2/EX2.5/ch2_5.sce | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) create mode 100755 1309/CH2/EX2.5/ch2_5.sce (limited to '1309/CH2/EX2.5/ch2_5.sce') diff --git a/1309/CH2/EX2.5/ch2_5.sce b/1309/CH2/EX2.5/ch2_5.sce new file mode 100755 index 000000000..1a6db96e3 --- /dev/null +++ b/1309/CH2/EX2.5/ch2_5.sce @@ -0,0 +1,24 @@ +clc; +clear; +printf("\t\t\tChapter2_example5\n\n\n"); +// determination of the heat gain per unit length +k1=231; // thermal conductivity of copper in BTU/(hr.ft.degree Rankine)from appendix table B1 +k2=0.02; // thermal conductivity of insuLtion in BTU/(hr.ft.degree Rankine) +// Specifications of 1 standard type M copper tubing from appendix table F2 are as follows +D2=1.125/12; // outer diameter in ft +D1=0.08792; // inner diameter in ft +R2=D2/2;// outer radius +printf("\nOuter radius is %.4f ft",R2); +R1=D1/2; // inner radius +printf("\nOuter radius is %.3f ft",R1); +t=0.5/12; // wall thickness of insulation in ft +R3=R2+t; +printf("\nRadius including thickness is %.4f ft",R3); +LRk1=(log(R2/R1))/(2*3.14*k1); // product of length and copper layer resistance +printf("\nProduct of length and copper layer resistance is: %.1e",LRk1); +LRk2=(log(R3/R2))/(2*3.14*k2); // product of length and insulation layer resistance +printf("\nProduct of length and insulation layer resistance is: %.2f",LRk2); +T1=40; // temperature of inside wall of tubing in degree fahrenheit +T3=70; // temperature of surface temperature of insulation degree fahrenheit +q_per_L=(T1-T3)/(LRk1+LRk2); // heat transferred per unit length in BTU/(hr.ft) +printf("\nThe heat transferred per unit length is %.2f BTU/(hr.ft)",q_per_L); -- cgit