From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1223/CH2/EX2.1/Ex2_1.sce | 29 +++++++++++++++++++++++++++++ 1223/CH2/EX2.10/Ex2_10.sce | 9 +++++++++ 1223/CH2/EX2.11/Ex2_11.sce | 8 ++++++++ 1223/CH2/EX2.2/Ex2_2.sce | 10 ++++++++++ 1223/CH2/EX2.3/Ex2_3.sce | 29 +++++++++++++++++++++++++++++ 1223/CH2/EX2.5/Ex2_5.sce | 12 ++++++++++++ 1223/CH2/EX2.8/Ex2_8.sce | 29 +++++++++++++++++++++++++++++ 7 files changed, 126 insertions(+) create mode 100755 1223/CH2/EX2.1/Ex2_1.sce create mode 100755 1223/CH2/EX2.10/Ex2_10.sce create mode 100755 1223/CH2/EX2.11/Ex2_11.sce create mode 100755 1223/CH2/EX2.2/Ex2_2.sce create mode 100755 1223/CH2/EX2.3/Ex2_3.sce create mode 100755 1223/CH2/EX2.5/Ex2_5.sce create mode 100755 1223/CH2/EX2.8/Ex2_8.sce (limited to '1223/CH2') diff --git a/1223/CH2/EX2.1/Ex2_1.sce b/1223/CH2/EX2.1/Ex2_1.sce new file mode 100755 index 000000000..bd03cad4a --- /dev/null +++ b/1223/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,29 @@ +clear; +clc; +//Example 2.1 +v_I=120;//(V)rms primary input +v_o=9;//(V)peak output voltage +V_Y=0.7;//(V)diode cut in voltage +//for center-tapped transformer circuit in fig.2.6(a) +v_S=v_o+V_Y//(V)peak value of secondary voltage +printf('\npeak value of secondary voltage=%.2f V\n',v_S) +v_S_rms=v_S/sqrt(2)//for a sinusoidal signal rms value of v_S +printf('\nrms value of v_S=%.2f V\n',v_S_rms) +//let turns ratio of the primary to secondary winding be x=N1/N2 +x=v_I/v_S_rms; +printf('\nturns ratio=%f \n',x) +//for the bridge circuit in fig.2.7(a) +v_Sb=v_o+2*V_Y;//(V)peak value of secondary voltage +printf('\npeak value of secondary voltage=%.2f V\n',v_Sb) +v_S_rms=v_Sb/sqrt(2);//for a sinusoidal signal rms value of v_S +printf('\nrms value of v_S=%f V\n',v_S_rms) +//let turns ratio of the primary to secondary winding be x=N1/N2 +x=v_I/v_S_rms; +printf('\nturns ratio=%f\n',x) +//for center tapped rectifier +PIV=2*v_S-V_Y; +printf('\npeak inverse voltage of a diode=%f V\n',PIV) +//for the bridge rectifier peak inverse voltage of a diode +PIV=v_Sb-V_Y; +printf('\npeak inverse voltage of a diode=%.2f V\n',PIV) +//advantage of bridge rectifier over center tapped rectifier is it requies only half of the turns diff --git a/1223/CH2/EX2.10/Ex2_10.sce b/1223/CH2/EX2.10/Ex2_10.sce new file mode 100755 index 000000000..404ea6417 --- /dev/null +++ b/1223/CH2/EX2.10/Ex2_10.sce @@ -0,0 +1,9 @@ +clear; +clc; +//Example 2.10 +n=1;//quantum efficiency +A=10^-2;//cm^2 junction area +p=5*10^17;//(cm^-2-s^-1) incident photon flux +e=1.6*10^-16;//charge of an electron +Iph=n*e*p*A; +printf('\nphotocurrent=%0.1f mA\n',Iph) diff --git a/1223/CH2/EX2.11/Ex2_11.sce b/1223/CH2/EX2.11/Ex2_11.sce new file mode 100755 index 000000000..c556e510f --- /dev/null +++ b/1223/CH2/EX2.11/Ex2_11.sce @@ -0,0 +1,8 @@ +clear; +clc; +//Example 2.11 +I=0.01;//(A) diode current +V_Y=1.7;//(V) forward bias voltage drop +Vt=0.2;//(V) +R=(5-V_Y-Vt)/I; +printf('\nresistance=%0.1f Ohm',R) diff --git a/1223/CH2/EX2.2/Ex2_2.sce b/1223/CH2/EX2.2/Ex2_2.sce new file mode 100755 index 000000000..48c645877 --- /dev/null +++ b/1223/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,10 @@ +clear; +clc; +//Example 2.2 +//full wave rectifier circuit with 60Hz input signal +V_M=10;//(V)peak output voltage +R=0.01;//(MOhm)output load resistance +f=60;//Hz +V_r=0.2;//(V)ripple voltage +C=V_M/(2*f*R*V_r);//capacitance +printf('\ncapacitance=%f microF\n',C) diff --git a/1223/CH2/EX2.3/Ex2_3.sce b/1223/CH2/EX2.3/Ex2_3.sce new file mode 100755 index 000000000..342a761b5 --- /dev/null +++ b/1223/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,29 @@ +clear; +clc; +//Example 2.3 +V_O=12;//(V)peak output voltage +I_L=0.12;//(A)current delivered to the load +R=V_O/I_L; +printf('\neffective load resistance=%.2f Ohm\n',R) +V_Y=0.7;//(V)diode cut in voltage +v_S=V_O+2*V_Y; +printf('\npeak value of v_S=%.2f V\n',v_S) +v_Srms=v_S/sqrt(2); +printf('\nrms voltage=%.2f V\n',v_Srms) +//let x=N1/N2 +Vin=120;//(V)input line voltage +x=Vin/v_Srms; +printf('\nturns ratio=%.2f \n',x) +VM=12;//(V) +Vr=5/100*VM; +printf('\nripple voltage=%.2f V\n',Vr) +f=60;//(Hz) input frequency +C=VM/(2*R*Vr*f); +printf('\nfilter capacitance=%f F\n',C) +i_Dmax=(VM/R)*(1+2*%pi*sqrt(VM/(2*Vr))); +printf('\npeak diode current=%.2f A\n',i_Dmax) +R=0.1;//Kohm +i_Davg=(1/(2*%pi))*sqrt(2*Vr/VM)*((VM/R)*(1+%pi*sqrt(VM/(2*Vr)))); +printf('\naverage diode current=%f mA\n',i_Davg) +PIV=v_S-V_Y; +printf('\npeak inverse voltage=%.2f V\n',PIV) diff --git a/1223/CH2/EX2.5/Ex2_5.sce b/1223/CH2/EX2.5/Ex2_5.sce new file mode 100755 index 000000000..de67161f5 --- /dev/null +++ b/1223/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,12 @@ +clear; +clc; +//Example 2.5 +rZ=4;//(Ohm) Zener resistance +V_Lnom=9;//(V) nominal output voltage +Izmax=0.3;//(A) maximum zener diode current +Izmin=0.03;//(A) minimum zener diode current +V_Lmax=V_Lnom+Izmax*rZ +V_Lmin=V_Lnom+Izmin*rZ +//percent regulation R +R=((V_Lmax-V_Lmin)/V_Lnom)*100; +printf('\npercent regulation=%0.1f \n',R) diff --git a/1223/CH2/EX2.8/Ex2_8.sce b/1223/CH2/EX2.8/Ex2_8.sce new file mode 100755 index 000000000..2b432da18 --- /dev/null +++ b/1223/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,29 @@ +clear; +clc; +//Example 2.8 +R1=5;R2=10;//(KOhm) +V_Y=0.7;//(V)diode cut in voltage +V1=5;V2=-5;//(V) +vt=0;//(V) +//asssuming initially diode D1 is off +//iR1=iD2=iR2=V1-V2-V_Y/(R1+R2) +iD2=(V1-V2-V_Y)/(R1+R2); +printf('\ndiode current=%0.2f mA\n',iD2) +iR1=iD2; +vo=V1-iR1*R1; +printf('\noutput voltage=%0.2f V\n',vo) +v=vo-V_Y;//v=v' +printf('\nVoltage=%0.1f V\n',v) +vt=4;//(V)fig.2.33 +//both D1 and D2 are on +vo==vt; +vo=4; +iD2=(V1-vo)/R1; +printf('\ndiode current=%.2f mA\n',iD2) +iR1==iD2; +v=vo-V_Y; +printf('\nV=%.2f V\n',v) +iR2=(v-V2)/R2; +printf('\niR2=%.2f mA\n',iR2) +iD1=iR2-iD2; +printf('\ncurrent through D1=%.2f mA\n',iD1) -- cgit