From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1202/CH14/EX14.5/14_5.png | Bin 0 -> 15025 bytes 1202/CH14/EX14.5/14_5.sce | 126 ++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 126 insertions(+) create mode 100755 1202/CH14/EX14.5/14_5.png create mode 100755 1202/CH14/EX14.5/14_5.sce (limited to '1202/CH14/EX14.5') diff --git a/1202/CH14/EX14.5/14_5.png b/1202/CH14/EX14.5/14_5.png new file mode 100755 index 000000000..65630b8bb Binary files /dev/null and b/1202/CH14/EX14.5/14_5.png differ diff --git a/1202/CH14/EX14.5/14_5.sce b/1202/CH14/EX14.5/14_5.sce new file mode 100755 index 000000000..e074e6506 --- /dev/null +++ b/1202/CH14/EX14.5/14_5.sce @@ -0,0 +1,126 @@ +clear +clc + +//Example 14.5 +disp('Example 14.5') + +mprintf('\n\nThere are many errors in this example\n... +1.In Eqn 14-17 the value of w2_o is not zero. It is 50kg/min.\n... +This is so because otherwise current signal from p(t) ie ... +\n eqn 14-30 is more than 20mA which is not possible\n\n.... +2.The step change in x1 is from 0.2 to 0.3 and not 0.2 to 0.4\n... +If there is a step change to x1=0.4, then with x2=0.6\n... +one cannot achieve output xsp=0.34 because it is less\n... +both x1 and x2.\n\n... +3.The gain of Gd is 0.65 which is correct because V\n... +has to be calculated using height=1.5meter ie\n... +how much the CSTR is filled and not h=3m, ie\n... +the capacity of CSTR. This is important because\n... +the person who has made solutions for the book has taken h=3m\n... +for generating graphs and hence the gain is twice. \n... +the graphs generated from this code are correct\n\n' ) + +//part(a) //========Static feedforward controller==========// +K_IP=(15-3)/(20-4); +Kv=300/12;tauV=0.0833; +Kt=(20-4)/0.5; +w2_o=50;x1_o=0;//Zero of the instrument +w1bar=650;w2bar=350;//kg/min +C1=4-w2_o/Kv/K_IP; //Eqn 14-16 to 14-19 +C2=w1bar/(Kv*K_IP*Kt); +C3=4+Kt*x1_o; +x1bar=0.2;x2bar=0.6;xbar=0.34; + +mprintf('\nThe values of C1, C2, C3 in Eqns 14-16 to 14-19 are\n %f, %f, %f',C1,C2,C3) + +//part(b) //=======Dynamic feedforward controller=======// +s=%s; +theta=1; +V=%pi*1^2*1.5; //pi*r^2*h finding volume +rho=1000;//kg/m3 +wbar=w1bar+w2bar; +tauD=V*rho/w2bar;tauP=V*rho/wbar; +Kp=(x2bar-xbar)/wbar; +Kd=w1bar/wbar; + +Gv=Kv/(tauV*s+1); +Gd=Kd/(tauP*s+1); +Gt=Kt;delay=1; +Gp=Kp/(tauP*s+1); +Gf=-Gd/Gv/Gt/Gp/K_IP; //Equation 14-33 without exp(+s) +//Gt=32*(1-theta/2*s+theta^2/12*s^2)/(1+theta/2*s+theta^2/12*s^2);//second order Pade approx. +Gt=32*(1-theta/2*s)/(1+theta/2*s);//first order Pade approx. +alpha=0.1; +Gf=horner(Gf,0)*(1.0833*s+1)/(alpha*1.0833*s+1);//Eqn 14-34 +disp(Gf,"Gf=") + + +//========Static feedforward controller simulation==========// +Ts=0.01;//sampling time in minutes +t=Ts:Ts:50; +xsp=0.34;//set point for conc. output of blender +x1step=0.2+[zeros(1,length(t)/5) 0.1*ones(1,length(t)*4/5)];//disturbance +//There is a one second lag in the measurement of the disturbance by Gt + +delay=1; +d=[0.2*ones(1,delay/Ts) x1step(1,1:$-delay/Ts)];//measurement of disturbance with lag +x1m=4+Kt*d; //Eqn 14-12 where d=x1(t)-x1_o + +//plot(t,[x1step' x1m']) +pt=C1+C2*(Kt*xsp-x1m+C3)/(x2bar-xsp); +//Now the values calculated by the above controller needs to be passed to the process +G_static=syslin('c',[Gd K_IP*Gv*Gp]); +//we take disturbance and control action in deviation variables +yt=0.34+csim([x1step-x1step(1,1);pt-pt(1,1)],t,G_static); +subplot(2,1,1) +plot(t,yt); +xtitle("Fig 14.13(a)","Time(min)","x(mass fraction)") +xgrid(); + +//========Dynamic feedforward controller simulation======// + +Ys_Ds=[Gd K_IP*32*Gf*Gv*Gp]; //Gt=32 without delay +Ys_Ds=syslin('c',Ys_Ds); +t=0.01:0.01:50; +d=[zeros(1,length(t)/5) 0.1*ones(1,length(t)*4/5)];//disturbance +d_shift=[zeros(1,1.1*length(t)/5) 0.1*ones(1,length(t)*3.9/5)]; +//we delay the disturbance by one minute for the feedforward controller +//We do this because Pade approx is not good for delay of 1 minute +yt=0.34+csim([d;d_shift],t,Ys_Ds) +plot(t,yt,color='red') +legend("Static Gain","Dynamic Compensation") + +//part(c) //=======PI controller for Feedback======// +Kcu=48.7;Pu=4;//min +Kc=0.45*Kcu;tauI=Pu/1.2;tauD=0; +Gc=Kc*(1+1/(tauI*s)+tauD*s/(1+tauD*s*0.1)); +Gm=Gt;//sensor/transmitter + + +//==========Feedforward and feedback control with dynamic compensation======// +Ys_Ds=[Gd K_IP*32*Gf*Gv*Gp]/(1+K_IP*Gc*Gv*Gp*Gm);//32 is magnitude of Gt +Ys_Ds=syslin('c',Ys_Ds); +t=0.01:0.01:50; +d=[zeros(1,length(t)/5) 0.1*ones(1,length(t)*4/5)];//disturbance +yt=0.34+csim([d;d_shift],t,Ys_Ds) +//This shifting is better because Pade approx is not accurate. Note that there is +//pade approx in the denominator also(Gm) which we cant help. +subplot(2,1,2) +plot(t,yt) +xgrid(); +xtitle("Fig 14.13(b)","Time(min)","x(mass fraction)") + +//==========Feedback control only with dynamic compensation======// +Ys_Ds=(Gd)/(1+K_IP*Gc*Gv*Gp*Gm); +Ys_Ds=syslin('c',Ys_Ds); +d=[zeros(1,length(t)/5) 0.1*ones(1,length(t)*4/5)];//disturbance +yt=0.34+csim(d,t,Ys_Ds) +plot(t,yt,color='red') +legend("FB+FF with dynamic compensation","FB only") + +mprintf("\n\nNote the slight mismatch between response \n... +times due to pade approx the gain is half of that in the\n... +book. Please see the heigh explanation above to understand.") + + + -- cgit