From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1133/CH3/EX3.11/Example3_11.sce | 51 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100755 1133/CH3/EX3.11/Example3_11.sce (limited to '1133/CH3/EX3.11') diff --git a/1133/CH3/EX3.11/Example3_11.sce b/1133/CH3/EX3.11/Example3_11.sce new file mode 100755 index 000000000..55be6498b --- /dev/null +++ b/1133/CH3/EX3.11/Example3_11.sce @@ -0,0 +1,51 @@ +//Example 3.11 +clc +disp("Step 1: Identify topology") +disp(" The feedback voltage is applied across the resistance R_e1 and it is in series with input signal. Hence feedback is voltage series feedback.") +disp("") +disp("step 2 and Step 3: Find input and output circuit.") +disp(" To find input circuit, set Vo = 0 (connecting C2 to ground), which gives parllel combination of Re with Rf at E1. To find output ciruit, set Ii = 0 (opening the input node E1 at emitter of Q1), which gives series combination od Rf and R_e1 across the output. The resultant circuit is shown in fig.3.57") +disp("") +disp("Step 4: Find open loop voltage gain (Av)") +rl2=(4.7*3.42)/(4.7+3.42) // in k-ohm +format(5) +disp(rl2," R_L2(in k-ohm) = R_c2 || (Rs+R) =") +disp(" A_i2 = -hfe = -50") +disp("R_i2 = hie = 1000 ohm = 1 k-ohm") +av2=-50*1.98 +format(3) +disp(av2," A_v2 = A_i2*R_L2 / R_i2 =") +disp(" A_i1 = -hfe = -50") +format(7) +rl1=((10*100*22*1)/((100*22)+(10*22)+(10*100)+(10*100*22)))*10^3 // in ohm +disp(rl1," R_L1(in ohm) = R_c1 || R3 || R4 || R_i2 =") +disp(" R_i1 = h_ie + (1+h_fe)*R_e1eff") +re1=1+(51*((3.3*0.12)/(3.42))) // in k-ohm +format(4) +disp(re1,"where R_e1eff(in k-ohm) = Rs || R =") +av1=(-50*865.46)/6900 +format(5) +disp(av1," A_v1 = A_i1*R_L1 / R_i1 =") +disp("The overall voltage gain,") +av=-6.27*-99 +format(7) +disp(av," Av = A_v1 * A_v2 =") +disp("") +disp("Step 5: Calculate beta") +beta=120/(120+3300) +format(6) +disp(beta," beta = Vf / Vo = Rs / Rs+R =") +disp("") +disp("Step 6: Calculate D, A_vf, R_if, R_of and R''_of") +d=1+(0.035*620.73) +format(7) +disp(d," D = 1 + Av*beta =") +avf=620.73/22.725 +format(5) +disp(avf," A_vf = Av / D =") +rif=6.9*22.725 // in k-ohm +format(6) +disp(rif," R_if(in k-ohm) = R_i1 * D =") +disp(" R_of = Ro / D = infinity") +rof=(1.98*10^3)/22.725 // in ohm +disp(rof," R''_of(in ohm) = R''o / D = R_L2 / D =") -- cgit