From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1052/CH21/EX21.10/2110.sce | 22 ++++++++++++++++++++++ 1052/CH21/EX21.12/2112.sce | 16 ++++++++++++++++ 1052/CH21/EX21.13/2113.sce | 23 +++++++++++++++++++++++ 1052/CH21/EX21.14/2114.sce | 17 +++++++++++++++++ 1052/CH21/EX21.16/2116.sce | 25 +++++++++++++++++++++++++ 1052/CH21/EX21.7/217.sce | 15 +++++++++++++++ 1052/CH21/EX21.8/218.sce | 22 ++++++++++++++++++++++ 1052/CH21/EX21.9/219.sce | 12 ++++++++++++ 8 files changed, 152 insertions(+) create mode 100755 1052/CH21/EX21.10/2110.sce create mode 100755 1052/CH21/EX21.12/2112.sce create mode 100755 1052/CH21/EX21.13/2113.sce create mode 100755 1052/CH21/EX21.14/2114.sce create mode 100755 1052/CH21/EX21.16/2116.sce create mode 100755 1052/CH21/EX21.7/217.sce create mode 100755 1052/CH21/EX21.8/218.sce create mode 100755 1052/CH21/EX21.9/219.sce (limited to '1052/CH21') diff --git a/1052/CH21/EX21.10/2110.sce b/1052/CH21/EX21.10/2110.sce new file mode 100755 index 000000000..38c4ee6c4 --- /dev/null +++ b/1052/CH21/EX21.10/2110.sce @@ -0,0 +1,22 @@ +clc; +//Example 21.10 +//page no 286 +printf("Example 21.10 page no 286\n\n"); +//a centrifugal pump is needed to transport water from sea level to 10000 feet above sea level +//using bernoulli equation +//neglectiing kinetic energy effects and frictional losses +P1=14.7//atmospheric pressure at sea level,psi +P2=10.2//atmospheric pressure at 10000 feet,psi +z1=0//at sea level,ft +z2=10000//height above sea level,ft +rho=62.4//density of water +g=32.2//gravitational acc. +g_c=32.2//gravitational constant +h_s=((P2-P1)*144/(rho) + (z2-z1)*(g/g_c))//work deliverd by the pump to the water,in ft.lbf/lb +h_s=9990//ft.lbf/lb +h_sf=h_s*50//in ft.lbf +printf("\n work h_sf=%f ft.lbf/s",h_sf); +//actual pump work is calculated by dividing the above terms by the frictional afficiency +neta=0.65//frictional efficiency +W_p=round((h_sf/550)/neta)//actual work +printf("\n actual work W_p=%f hp",W_p); diff --git a/1052/CH21/EX21.12/2112.sce b/1052/CH21/EX21.12/2112.sce new file mode 100755 index 000000000..f103401c9 --- /dev/null +++ b/1052/CH21/EX21.12/2112.sce @@ -0,0 +1,16 @@ +clc; +//Example 21.12 +//page no 288 +printf("Example 21.12 page no 288\n\n"); +//refer to illustrative Example 21.4 +// if the pipe contains two globe valves and one straight through tee,what is the friction loss +K_f_globe=6 +K_f_tee=0.4 +v=2.53// flow velocity +g_c=32.2 +f=5/4//friction factor +L=144//lenth of pipe +D=62.4//diameter +h_f=4*f*(L/D) + (2*K_f_globe + K_f_tee)*(v^2/(2*g_c)) +printf("\n frictional loss h_f=%f ft.lbf/lb",h_f); + diff --git a/1052/CH21/EX21.13/2113.sce b/1052/CH21/EX21.13/2113.sce new file mode 100755 index 000000000..cf5eda5e5 --- /dev/null +++ b/1052/CH21/EX21.13/2113.sce @@ -0,0 +1,23 @@ +clc; +//Example 21.13 +//page no 289 figure 21.1 +printf("Example 21.13 page no 289 fig 21.1 \n\n\n"); +//a pitot tube is inserted in acircular pipe to measure the flow velocity +// the tube is inserted so that it points upstream into the flow and the pressure sensed by thre probeis the stagnation pressure +//the change in elevation between the tip of the pitot and the wall pressure tap is negligible +//the flowing fluid is soyabean oil at 20 deg C and the fluid in manometer tube is mercury +//point 2 is a stagnation point ,P2>P1 and the manometer fluid should be higher on th eleft side(h<0) +rho_m=13600//density of mercury,kg/m^3 +h=0.04//height of mercury, +rho=919//density of oil kg/m^3 +g=9.804 +D=0.055//diameter of pipe,m +meu=0.04//viscosity of oil,kg.m.s +v=sqrt(2*g*h*((rho_m/rho)-1))//flow velocity +printf("\n flow velocity v=%f m/s",v); +//assuming uniform velocity +S=(%pi/4)*D^2 +m_dot=rho*v*S//mass flow rate +R_e=(D*v*rho)/meu//reynolds no +printf("\n reynolds no R_e=%f ",R_e); +printf("\n mass flow rate m_dot=%f kg/s",m_dot); diff --git a/1052/CH21/EX21.14/2114.sce b/1052/CH21/EX21.14/2114.sce new file mode 100755 index 000000000..023040daa --- /dev/null +++ b/1052/CH21/EX21.14/2114.sce @@ -0,0 +1,17 @@ +clc; +//Example 21.14 +//page no 290 +printf("Example 21.14 page no 290\n\n"); +//given: a 50 ft pipe with flowing water ,we have to determine the flow rate if there is an expansion from 3/8 inch to 1/8 inch and immediatly back to 3/8n inch with an overall pressure loss no greater than 2lbf/ft^2 +//from table A.5 in the appendix +S1=0.00133//cross sectional area of 3/8 inch pipe,ft^2 +S2=0.00211//cross sectional area of 1/2 inch pipe,ft^2 +K_e=(1-S1/S2)^2//expansion constant +K_c=0.4*(1-S2/S1)^2//contraction constant +L=50//length of pipe +D=0.03125//diameter of pipe +v=1.93//velocity ,ft/s +f=0.01124//friction factor from table 21.3,for velocity estimated to be 1.93 ft/s +g_c=32.2 +h_f=(4*f*L/D + K_e + K_c)*(v^2*g_c)//frictional loss +printf("\n frictional loss h_f=%f ft.lbf/lb ",h_f); diff --git a/1052/CH21/EX21.16/2116.sce b/1052/CH21/EX21.16/2116.sce new file mode 100755 index 000000000..d71bff687 --- /dev/null +++ b/1052/CH21/EX21.16/2116.sce @@ -0,0 +1,25 @@ +clc; +//Example 21.16 +//page no 291 +printf("Example 21.16 page no 291\n\n"); +//water flows in a concrete pipe +v_p=0.02// flow velocity,m/s +D_p=1.5//diameter of pipe +L_p=20//length of pipe,m +rho_p=1000//density of water,kg/m^3 +meu_p=0.001//viscosity of water,kg/m.s +K_p=0.003//roughnes factor,m +//this prototype is to be modeled in a lab using a 1/3o th scale pipe +D_m=D_p/30//D_m is diameter of modeled pipe +L_m=L_p*(D_m/D_p)//length of modeled pipe +K_m=K_p*(D_m/D_p)//roughness factor for modeled pipe +//the fluid in the model is caster oil +rho_m=961.3//densiy of oil, kg/m^3 +meu_m=0.0721//viscosity of oil,kg/m.s +//since R_e = (rho_m*v_m*D_m)/meu_m = (rho_p*v_p*D_p)/meu_p +v_m = (rho_p*v_p*D_p*meu_m)/(rho_m*D_m*meu_p)// flow velcity in molded pipe +printf("\n flow velocity v_m=%f m/s",v_m); +//pressure drop in prototype +P_drop_m=1e+5//pressure drop in model +P_drop_p=(P_drop_m*rho_p*(v_p)^2)/(rho_m*(v_m)^2)//pressure drop in prototype +printf("\n pressure drop in prototype P_drop_p=%f Pa",P_drop_p); diff --git a/1052/CH21/EX21.7/217.sce b/1052/CH21/EX21.7/217.sce new file mode 100755 index 000000000..d61bf3973 --- /dev/null +++ b/1052/CH21/EX21.7/217.sce @@ -0,0 +1,15 @@ +clc; +//Example 21.7 +//Page no 284 +printf("Example 21.7 page no 284\n\n"); +// water is flowing through a 3/8 in schedule 40 brass pipe +D=0.0411//diameter of pipe,ft +S=0.00133//cross section area of pipe,ft^2 +meu=6.598e-4//viscosity of water from table A.4 in the appendix,lb/ft.s +rho=62.4//density,lb/ft^3 +q_gpm=2//vol.flow rate +q=q_gpm*0.00228//volumatric flow rate in ft^3s +v=q/S//velocity of fluid +printf("\n veloctiy of fluid v=%f ft/s",v); +R_e=D*v*rho/meu//reynolds no. +printf("\n reynolds no R_e=%f ",R_e); diff --git a/1052/CH21/EX21.8/218.sce b/1052/CH21/EX21.8/218.sce new file mode 100755 index 000000000..8d73af785 --- /dev/null +++ b/1052/CH21/EX21.8/218.sce @@ -0,0 +1,22 @@ +clc; +//Example 21.8 +//page no 285 +printf("Example 21.8 page no 285\n\n"); +//water flowing through a pipe +rho=62.4//density of water,lb/ft^3 +meu=6.72e-4//viscosity of water,lb/ft.s +q_1gpm=1.5//vol. flow rate in gpm +q_2gpm=6//vol. flow rate in gpm +D_1=0.493//internal diameter of 3/8 in schdule pipe +v11=(0.409*q_1gpm)/(D_1^2)//flow velocity for an 3/8 in pipe with 1.5 gpm flow rate +v12=(0.409*q_2gpm)/(D_1^2)//flow velocity for an 3/8 pipe with 6 gpm flow +R_e11=D_1*v11*rho/meu//reynolds no for case 11 +R_e12=D_1*v12*rho/meu//reynolds no for case 12 +printf("\n reynolds no R_e11=%f\n reynolds no R_e12=%f ",R_e11,R_e12);//printing mistake in book +D_2=0.622//internal diameter of 1/2 in schdule pipe +v21=(0.409*q_1gpm)/D_2^2//flow velocity for 1/2 pipe with 1.5 gpm +v22=(0.409*q_2gpm)/D_2^2//flow velocity for 1/2 pipe with 6 gpm +R_e21=D_2*v21*rho/meu//reynolds no for case 21 +R_e22=D_2*v22*rho/meu//reynolds no foe case 22 +printf("\n reynolds no R_e21=%f\n reynolds no R_e22=%f",R_e21,R_e22); +//printing mistake in value of R_e diff --git a/1052/CH21/EX21.9/219.sce b/1052/CH21/EX21.9/219.sce new file mode 100755 index 000000000..c9e7e7fb6 --- /dev/null +++ b/1052/CH21/EX21.9/219.sce @@ -0,0 +1,12 @@ +clc; +//Example 21.9 page no 286 +printf("Example no 21.9 page no 286\n\n"); +//water is flowing in a vertical pipe +//assume constant velocity +P_drop=-4.5//pressure drop from bottom to top +rho=62.4 //density of water +z2=15//height of pipe +z1=0//bottom level +//applying bernoulli equation +h_f=(P_drop/rho)+(z2-z1)//frictional loss +printf("\n frictional loss h_f=%f ft.lbf/lb ",h_f) -- cgit