From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1040/CH7/EX7.5/Ex7_5.sce | 114 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 114 insertions(+) create mode 100644 1040/CH7/EX7.5/Ex7_5.sce (limited to '1040/CH7/EX7.5/Ex7_5.sce') diff --git a/1040/CH7/EX7.5/Ex7_5.sce b/1040/CH7/EX7.5/Ex7_5.sce new file mode 100644 index 000000000..b987b4f34 --- /dev/null +++ b/1040/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,114 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436 +//Chapter-7 Ex7.5 Pg No.293 +//Title:Maximum rate of CO absorption and Dimensions of Bubble Column Reactor +//=========================================================================================================== +clear +clc +// COMMON INPUT +P_dash=5;//Partial pressure of acetic acid (atm) +P_total=20;//Total Pressure (atm) +myu=0.19;// Viscosity of acetic acid +T_C=180;//Temperature in (°C) +T_K=T_C+273;//Temperature in (K) +sigma_20=28;//Surface Tension(Dynes/cm) at 20 (°C) +sigma_180=20;//Surface Tension (Dynes/cm)at 180 (°C) +M_CO=28;//Molecular weight of CO +M_B=60.05;//Molecular weight acetic acid +V_A= 30.7;//Molar volume +S_CO=7*10^(-3);//Solubility of CO (mol/L atm) +f_CO=0.75;//Fraction of CO in feed +f_acetic_acid=1-f_CO;//Fraction of Acetic acid +R=82.056*(10^-3);//(cm3 atm/ K  mol) +rho_air=1.21;//(kg/m3)density of air at 20 (°C) +sigma_H2O=72;//Surface tension (Dynes/cm) +myu_H2O=1;//Viscosity of water +k_L_a_air_water=0.051;//(sec-1) +D_O2_water=2.4*(10^-5);//(cm2/sec)diffusivity for oxygen in waterat 20(°C) +Conc_Rh=4*10^(-3);//Concentration of Rohdium(M) +Conc_CH3I=1;//Concentration of Methyl Iodide(M) +F_product_acetic_acid=0.1;// Rate of acetic acid produced (kmol/sec) +f_CO_reacted=0.8;//80% of CO reacted +u_g=0.1;//(m/sec) +Epsilon_air_water_new=0.07;//At velocity 3(cm/sec) +Epsilon_air_water_old= 0.12;//At velocity 6(cm/sec) +u_g_c=5*(10^(-2));//Gas Velocity Ex7.5.c(m/sec) + + + +//CALCUATION (Ex7.5.a) +D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//Diffusivity of CO (Wilke–Chang equation Eq4.17) +M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average Molecular weight +rho_g=M_ave*P_total/(R*T_K);//From ideal gas law +epsilon_air_water= 0.12;//At velocity 6(cm/sec) +epsilon=epsilon_air_water*(sigma_H2O/sigma_180)^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);//From equation 7.64 +u_G=6;//From figure 7.12(cm/sec) +k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(epsilon/epsilon_air_water);//From equation 7.69 +P_CO=P_total-P_dash; +C_CO_Star=S_CO*P_CO; +r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15 atm +r_test=158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I);//Kinetic rate at 180 (°C) + +//CALCULATION(Ex7.5.b) +F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate of flow of CO (kmol/sec) +F_total=F_feed_CO/f_CO; +Q=F_total*R*T_K/(P_total); +S=Q/u_g; +D_t=sqrt(4*S/%pi); +r_test_b=(158.8*(10^(6))*exp(-8684/T_K)*(Conc_Rh)*(Conc_CH3I))*(10^(-3));//Kinetic rate at 180 (°C) +liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3) +h0=liquid_vol/S;//clear liquid +h=h0/(1-epsilon);//aerated liquid + +//CALCULATION(Ex7.5.c) +Q=F_total*R*T_K/(P_total); +S=Q/u_g_c; +D_t_c=sqrt(4*S/%pi); +Epsilon_new=(Epsilon_air_water_new/Epsilon_air_water_old)*epsilon; +liquid_vol= (F_product_acetic_acid/r_test_b)*(10^(-3));//liquid volume (m3) +h0=liquid_vol/S;//clear liquid +h_new=h0/(1-Epsilon_new);//aerated liquid + +//OUTPUT (Ex7.5.a) +mprintf('\n OUTPUT Ex7.5.a'); +mprintf('\n=========================================================='); +mprintf('\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max); +mprintf('\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test); +mprintf('\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); + +//OUTPUT (Ex7.5.b) +mprintf('\n\n\n OUTPUT Ex7.5.b'); +mprintf('\n=========================================================='); +mprintf('\n\tThe Dimensions of the reactor are '); +mprintf('\n\tDiameter:%0.0f m',D_t); +mprintf('\n\tHeight:%0.2f m',h); + +//OUTPUT (Ex7.5.c) +mprintf('\n\n\n OUTPUT Ex7.5.c'); +mprintf('\n=========================================================='); +mprintf('\n\tThe new dimensions of the reactor'); +mprintf('\n\tDiameter:%0.1f m',D_t_c); +mprintf('\n\tHeight:%0.1f m',h_new); + +//FILE OUTPUT +fid= mopen('.\Chapter7-Ex5-Output.txt','w'); +mfprintf(fid,'\n OUTPUT Ex7.5.a'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n\tThe maximum rate of CO absorption at 15 atm : %f (mol/L s)',r_max); +mfprintf(fid,'\n\tThe kinetic rate of CO absorption at 180(°C) : %f (mol/L s)',r_test); +mfprintf(fid,'\n\tThe predicted value of k_L_a : %0.2f (s-1)',k_L_a); +mfprintf(fid,'\n\n\n OUTPUT Ex7.5.b'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n\tThe Dimensions of the reactor are '); +mfprintf(fid,'\n\tDiameter:%0.0f m',D_t); +mfprintf(fid,'\n\tHeight:%0.2f m',h); +mfprintf(fid,'\n\n\n OUTPUT Ex7.5.c'); +mfprintf(fid,'\n=========================================================='); +mfprintf(fid,'\n\tThe new dimensions of the reactor'); +mfprintf(fid,'\n\tDiameter:%0.1f m',D_t_c); +mfprintf(fid,'\n\tHeight:%0.1f m',h_new); +mclose(fid); + +//=================================================END OF PROGRAM=========================================================== + + + -- cgit