From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1040/CH1/EX1.5/Chapter1_Ex5_Output.txt | 8 ++++ 1040/CH1/EX1.5/Chapter1_Ex5_Plot_1.pdf | Bin 0 -> 44447 bytes 1040/CH1/EX1.5/Ex1_5.sce | 72 +++++++++++++++++++++++++++++++++ 3 files changed, 80 insertions(+) create mode 100644 1040/CH1/EX1.5/Chapter1_Ex5_Output.txt create mode 100644 1040/CH1/EX1.5/Chapter1_Ex5_Plot_1.pdf create mode 100644 1040/CH1/EX1.5/Ex1_5.sce (limited to '1040/CH1/EX1.5') diff --git a/1040/CH1/EX1.5/Chapter1_Ex5_Output.txt b/1040/CH1/EX1.5/Chapter1_Ex5_Output.txt new file mode 100644 index 000000000..041ed4e09 --- /dev/null +++ b/1040/CH1/EX1.5/Chapter1_Ex5_Output.txt @@ -0,0 +1,8 @@ + +====================================================================================== + Method_1 Method_2 +====================================================================================== + Slope 163.142857 14183.673469 + Intercept 13152.380952 156.530612 + Km (M) 0.012404 0.011036 + Vm(mol/L-sec) 0.000076 0.000071 \ No newline at end of file diff --git a/1040/CH1/EX1.5/Chapter1_Ex5_Plot_1.pdf b/1040/CH1/EX1.5/Chapter1_Ex5_Plot_1.pdf new file mode 100644 index 000000000..5aa3b6db0 Binary files /dev/null and b/1040/CH1/EX1.5/Chapter1_Ex5_Plot_1.pdf differ diff --git a/1040/CH1/EX1.5/Ex1_5.sce b/1040/CH1/EX1.5/Ex1_5.sce new file mode 100644 index 000000000..1ff042cb0 --- /dev/null +++ b/1040/CH1/EX1.5/Ex1_5.sce @@ -0,0 +1,72 @@ +//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436. +//Chapter-1 Ex1.5 Pg No. 29 +//Title: Methods to determine km and vm +//======================================================================================== +clear +clc +clf +//INPUT +S=[2;5;10;15]*10^(-3);//Concentration of substrate [HCO3] +r_reciprocal=[95;45;29;25]*10^(3);//Reciprocal rates (L-sec/mol) + +//CALCULATION +//Plot 1 refer equation 1.24 Pg No.29 +x1=(S).^(-1); +y1=r_reciprocal; +scf(0) +plot(x1,y1*10^(-3),'RED'); +xlabel("1/[S]"); +ylabel("(1/r)*10^-3"); +xtitle("1/r versus 1/S"); +p=length(x1); +X_1=[x1 ones(p,1)]; +R1=X_1\y1; +slope(1)=R1(1,1); +intercept(1)=R1(2,1); +v_m(1)=(1/(intercept(1)));//Maximum Reaction Rate(mol/L-sec) +k_m(1)=slope(1)*v_m(1);//Michaelis-Menton constant + +//Plot 2 refer equation 1.25 Pg No.29 +x2=S; +y2=S.*r_reciprocal; +scf(1) +plot(x2*10^(3),y2); +xlabel("(S)*10^3"); +ylabel("(S)/r"); +xtitle("(S)/r versus (S)"); +q=length(x2); +X_2=[x2 ones(q,1)]; +R2=X_2\y2; +slope(2)=R2(1,1); +intercept(2)=R2(2,1); +v_m(2)=1/(slope(2));//Maximum Reaction Rate (mol/L-sec) +k_m(2)=intercept(2)/(slope(2));//Michaelis-Menton constant + + +//OUTPUT +mprintf('\n======================================================================================'); +mprintf('\n \t\tMethod_1\tMethod_2'); +mprintf('\n======================================================================================'); +i=1 + mprintf('\n Slope \t%f\t%f',slope(i),slope(i+1)); + mprintf('\n Intercept \t%f\t%f',intercept(i),intercept(i+1)); + mprintf('\n Km (M) \t%f\t%f',k_m(i),k_m(i+1)); + mprintf('\n Vm(mol/L-sec) %f\t%f',v_m(i),v_m(i+1)); + +//FILE OUTPUT +fid= mopen('.\Chapter1-Ex5-Output.txt','w'); +mfprintf(fid,'\n======================================================================================'); +mfprintf(fid,'\n \t\tMethod_1\tMethod_2'); +mfprintf(fid,'\n======================================================================================'); +i=1 + mfprintf(fid,'\n Slope \t%f\t%f',slope(i),slope(i+1)); + mfprintf(fid,'\n Intercept \t%f\t%f',intercept(i),intercept(i+1)); + mfprintf(fid,'\n Km (M) \t%f\t%f',k_m(i),k_m(i+1)); + mfprintf(fid,'\n Vm(mol/L-sec) %f\t%f',v_m(i),v_m(i+1)); +mclose(fid); + +//========================================================================END OF PROGRAM================================= +//Disclaimer: Least Square method is used to find the slope and intercept in this example. +// Hence the values differ from the graphically obtained values of slope and intercept in the textbook. + + -- cgit