diff options
Diffstat (limited to '929')
-rwxr-xr-x | 929/CH1/EX1.16/Example1_16.sce | 378 | ||||
-rwxr-xr-x | 929/CH3/EX3.1/Example3_1.sce | 48 | ||||
-rwxr-xr-x | 929/CH6/EX6.7.a/Example6_7_a.sce | 123 |
3 files changed, 274 insertions, 275 deletions
diff --git a/929/CH1/EX1.16/Example1_16.sce b/929/CH1/EX1.16/Example1_16.sce index 4a222071c..0326822bf 100755 --- a/929/CH1/EX1.16/Example1_16.sce +++ b/929/CH1/EX1.16/Example1_16.sce @@ -1,190 +1,190 @@ -//Example 1.16
-
-clear;
-
-clc;
-
-//Part(I)
-//This part of the program includes the plotting of the input wave (triangular wave). To plot the wave we have divided the time period(assuming T=2) into 3 time intervals t1, t2, t3 and then create voltage equation for each using the given conditions.
-
-VCC=13;
-
-VEE=-13;
-
-A=-2;//Gain
-
-t1=[0:10^(-4):0.5];
-
-t2=[0.5:10^(-4):1.5];
-
-t3=[1.5:10^(-4):2.5];
-
-vt1=20*t1;
-
-vt2=20*(1-t2);
-
-vt3=20*(t3-2);
-
-subplot(131);
-
-title(" Inverting Amplifier driven into saturation waveforms ","fontsize",6);
-
-subplot(334);
-
-plot(t1,vt1);
-
-plot(t2,vt2);
-
-plot(t3,vt3);
-
-xlabel("Time(t)","fontsize",3);
-
-ylabel("Input Voltage(Vin)","fontsize",3);
-
-title("Vin vs t","fontsize",4);
-
-//Part(II)
-//In this part we have plotted vo by using the conditions vo=-2vI for -6.5V<vI<6.5V, otherwise vo=-13.Again we have divided the time period into 5 parts to1, to2, to3, to1i, to2i depending upon the response in each interval.
-
-vIbor=VCC/2;
-
-to1min=0;
-
-to1max=6.5/20;
-
-to2min=1-(6.5/20);
-
-to2max=1+(6.5/20);
-
-to3min=2-(6.5/20);
-
-to3max=2+(6.5/20);
-
-to1=[to1min:10^(-4):to1max];
-
-to2=[to2min:10^(-4):to2max];
-
-to3=[to3min:10^(-4):to3max];
-
-to1imin=to1max;
-
-to1imax=to2min;
-
-to2imin=to2max;
-
-to2imax=to3min;
-
-to1i=[to1imin:10^(-4):to1imax];
-
-to2i=[to2imin:10^(-4):to2imax];
-
-vo1=-13*(to1-to1min)/(to1max-to1min);
-
-vo1i=-13;
-
-vo2=(((13+13)/(to2max-to2min))*(to2-to2min))-13;
-
-vo2i=13;
-
-vo3=(((13+13)/(to3min-to3max))*(to3-to3max))-13;
-
-subplot(335);
-
-plot(to1,vo1);
-
-plot(to1i,vo1i);
-
-plot(to2,vo2);
-
-plot(to2i,vo2i);
-
-plot(to3,vo3);
-
-ylabel("Output Voltage(Vout)","fontsize",3);
-
-xlabel("Time(t)","fontsize",3);
-
-title("Vout vs t","fontsize",4);
-
-//Part(III)
-//In this part we will plot vN for which we have divided the time period into 7 time intervals tNi1, tNi2, tNi3, tN11, tN12, tN21, tN22 depending upon the response in each cycle voltage equation is obtained and plotted.For -6.5<vI<6.5 vN=0 and when vI will peak at 10V vN will peak at 2.33 and for vI<6-.5 and vI>6.5, circuit behaviour is symmetric.
-
-vIbor=VCC/2;
-
-tNi1min=0;
-
-tNi1max=6.5/20;
-
-tNi2min=1-(6.5/20);
-
-tNi2max=1+(6.5/20);
-
-tNi3min=2-(6.5/20);
-
-tNi3max=2+(6.5/20);
-
-tNi1=[tNi1min:10^(-4):tNi1max];
-
-tNi2=[tNi2min:10^(-4):tNi2max];
-
-tNi3=[tNi3min:10^(-4):tNi3max];
-
-tN11min=tNi1max;
-
-tN11max=(tNi2min+tNi1max)/2;
-
-tN12min=tN11max;
-
-tN12max=tNi2min;
-
-tN21min=tNi2max;
-
-tN21max=(tNi2max+tNi3min)/2;
-
-tN22min=tN21max;
-
-tN22max=tNi3min;
-
-tN11=[tN11min:10^(-4):tN11max];
-
-tN12=[tN12min:10^(-4):tN12max];
-
-tN21=[tN21min:10^(-4):tN21max];
-
-tN22=[tN22min:10^(-4):tN22max];
-
-vNi1=0;
-
-vN11=(2.33/(tN11max-tN11min))*(tN11-tN11min);
-
-vN12=-(2.33/(tN12max-tN12min))*(tN12-tN12max);
-
-vNi2=0;
-
-vN21=-(2.33/(tN21max-tN21min))*(tN21-tN21min);
-
-vN22=(2.33/(tN22max-tN22min))*(tN22-tN22max);
-
-vNi3=0;
-
-subplot(336);
-
-plot(tNi1,vNi1);
-
-plot(tN11,vN11);
-
-plot(tN12,vN12);
-
-plot(tNi2,vNi2);
-
-plot(tN21,vN21);
-
-plot(tN22,vN22);
-
-plot(tNi3,vNi3);
-
-xlabel("Time(t)","fontsize",3);
-
-ylabel("Vn","fontsize",3);
-
+//Example 1.16 + +clear; + +clc; + +//Part(I) +//This part of the program includes the plotting of the input wave (triangular wave). To plot the wave we have divided the time period(assuming T=2) into 3 time intervals t1, t2, t3 and then create voltage equation for each using the given conditions. + +VCC=13; + +VEE=-13; + +A=-2;//Gain + +t1=[0:10^(-4):0.5]; + +t2=[0.5:10^(-4):1.5]; + +t3=[1.5:10^(-4):2.5]; + +vt1=20*t1; + +vt2=20*(1-t2); + +vt3=20*(t3-2); + +subplot(131); + +title(" Inverting Amplifier driven into saturation waveforms ","fontsize",6); + +subplot(334); + +plot(t1,vt1); + +plot(t2,vt2); + +plot(t3,vt3); + +xlabel("Time(t)","fontsize",3); + +ylabel("Input Voltage(Vin)","fontsize",3); + +title("Vin vs t","fontsize",4); + +//Part(II) +//In this part we have plotted vo by using the conditions vo=-2vI for -6.5V<vI<6.5V, otherwise vo=-13.Again we have divided the time period into 5 parts to1, to2, to3, to1i, to2i depending upon the response in each interval. + +vIbor=VCC/2; + +to1min=0; + +to1max=6.5/20; + +to2min=1-(6.5/20); + +to2max=1+(6.5/20); + +to3min=2-(6.5/20); + +to3max=2+(6.5/20); + +to1=[to1min:10^(-4):to1max]; + +to2=[to2min:10^(-4):to2max]; + +to3=[to3min:10^(-4):to3max]; + +to1imin=to1max; + +to1imax=to2min; + +to2imin=to2max; + +to2imax=to3min; + +to1i=[to1imin:10^(-4):to1imax]; + +to2i=[to2imin:10^(-4):to2imax]; + +vo1=-13*(to1-to1min)/(to1max-to1min); + +vo1i=-13; + +vo2=(((13+13)/(to2max-to2min))*(to2-to2min))-13; + +vo2i=13; + +vo3=(((13+13)/(to3min-to3max))*(to3-to3max))-13; + +subplot(335); + +plot(to1,vo1); + +plot(to1i,vo1i*ones(1,length(to1i))); + +plot(to2,vo2); + +plot(to2i,vo2i*ones(1,length(to2i))); + +plot(to3,vo3); + +ylabel("Output Voltage(Vout)","fontsize",3); + +xlabel("Time(t)","fontsize",3); + +title("Vout vs t","fontsize",4); + +//Part(III) +//In this part we will plot vN for which we have divided the time period into 7 time intervals tNi1, tNi2, tNi3, tN11, tN12, tN21, tN22 depending upon the response in each cycle voltage equation is obtained and plotted.For -6.5<vI<6.5 vN=0 and when vI will peak at 10V vN will peak at 2.33 and for vI<6-.5 and vI>6.5, circuit behaviour is symmetric. + +vIbor=VCC/2; + +tNi1min=0; + +tNi1max=6.5/20; + +tNi2min=1-(6.5/20); + +tNi2max=1+(6.5/20); + +tNi3min=2-(6.5/20); + +tNi3max=2+(6.5/20); + +tNi1=[tNi1min:10^(-4):tNi1max]; + +tNi2=[tNi2min:10^(-4):tNi2max]; + +tNi3=[tNi3min:10^(-4):tNi3max]; + +tN11min=tNi1max; + +tN11max=(tNi2min+tNi1max)/2; + +tN12min=tN11max; + +tN12max=tNi2min; + +tN21min=tNi2max; + +tN21max=(tNi2max+tNi3min)/2; + +tN22min=tN21max; + +tN22max=tNi3min; + +tN11=[tN11min:10^(-4):tN11max]; + +tN12=[tN12min:10^(-4):tN12max]; + +tN21=[tN21min:10^(-4):tN21max]; + +tN22=[tN22min:10^(-4):tN22max]; + +vNi1=0; + +vN11=(2.33/(tN11max-tN11min))*(tN11-tN11min); + +vN12=-(2.33/(tN12max-tN12min))*(tN12-tN12max); + +vNi2=0; + +vN21=-(2.33/(tN21max-tN21min))*(tN21-tN21min); + +vN22=(2.33/(tN22max-tN22min))*(tN22-tN22max); + +vNi3=0; + +subplot(336); + +plot(tNi1,vNi1*ones(1,length(tNi1))); + +plot(tN11,vN11); + +plot(tN12,vN12); + +plot(tNi2,vNi2*ones(1,length(tNi2))); + +plot(tN21,vN21); + +plot(tN22,vN22); + +plot(tNi3,vNi3*ones(1,length(tNi3))); + +xlabel("Time(t)","fontsize",3); + +ylabel("Vn","fontsize",3); + title("Vn vs t","fontsize",4);
\ No newline at end of file diff --git a/929/CH3/EX3.1/Example3_1.sce b/929/CH3/EX3.1/Example3_1.sce index 920cacc19..0abfe1c48 100755 --- a/929/CH3/EX3.1/Example3_1.sce +++ b/929/CH3/EX3.1/Example3_1.sce @@ -1,25 +1,25 @@ -//Example 3.1
-
-clear;
-
-clc;
-
-R=10;
-
-C=40*10^(-6);
-
-L=5*10^(-3);
-
-Hsnum=(R/L)*%s;
-
-Hsden=((%s^(2))+(R/L)*%s+(1/(L*C)));
-
-Hs=Hsnum/Hsden;//Transfer Function
-
-h=syslin('c',Hs);
-
-plzr(h);
-
-zeroes=roots(Hsnum);
-
+//Example 3.1 + +clear; + +clc; + +R=10; + +C=40*10^(-6); + +L=5*10^(-3); + +Hsnum=(R/L)*%s; + +Hsden=((%s^(2))+(R/L)*%s+(1/(L*C))); + +Hs=Hsnum/Hsden;//Transfer Function + +h=syslin('c',Hs); + +plzr(h); + +zeroes=roots(Hsnum); + poles=roots(Hsden);
\ No newline at end of file diff --git a/929/CH6/EX6.7.a/Example6_7_a.sce b/929/CH6/EX6.7.a/Example6_7_a.sce index 9aef3664e..ac48bfa30 100755 --- a/929/CH6/EX6.7.a/Example6_7_a.sce +++ b/929/CH6/EX6.7.a/Example6_7_a.sce @@ -1,63 +1,62 @@ -//Example 6.7(a)
-
-clear;
-
-clc;
-
-IA=19.6*10^(-6);
-
-Cc=30*10^(-12);
-
-SR=0.633*10^6;
-
-R1=3*10^3;
-
-R2=12*10^3;
-
-A0=-(R2/R1);
-
-b=R1/(R1+R2);
-
-a0=2*10^5;
-
-ft=1*10^6;
-
-ro=100;
-
-Vim=-0.5;
-
-tau=1/(2*%pi*b*ft);
-
-Vomcrit=SR*tau;
-
-Voinf=A0*Vim;
-
-V1=Voinf-Vomcrit;
-
-t=[0:2*10^(-8):7*10^(-6)];
-
-t1=V1/SR;
-
-t12=[0:2*10^(-8):tau]
-
-vo3=0;
-
-plot(t12,vo3);
-
-t11=[tau:2*10^(-8):t1+tau];
-
-vo1=SR*(t11-tau);
-
-t22=[t1+tau:2*10^(-8):7*10^(-6)];
-
-vo2=Voinf+((V1-Voinf)*exp(-(t22-t1-tau)/tau));
-
-plot(t11,vo1);
-
-plot(t22,vo2);
-
-xlabel("time(t)","fontsize", 6);
-
-ylabel("vo(t)","fontsize", 6);
-
+//Example 6.7(a) + +clear; + +clc; + +IA=19.6*10^(-6); + +Cc=30*10^(-12); + +SR=0.633*10^6; + +R1=3*10^3; + +R2=12*10^3; + +A0=-(R2/R1); + +b=R1/(R1+R2); + +a0=2*10^5; + +ft=1*10^6; + +ro=100; + +Vim=-0.5; + +tau=1/(2*%pi*b*ft); + +Vomcrit=SR*tau; + +Voinf=A0*Vim; + +V1=Voinf-Vomcrit; + +t=[0:2*10^(-8):7*10^(-6)]; + +t1=V1/SR; + +t12=[0:2*10^(-8):tau] + +vo3=0*ones(1,length(t12)); +plot(t12,vo3); + +t11=[tau:2*10^(-8):t1+tau]; + +vo1=SR*(t11-tau); + +t22=[t1+tau:2*10^(-8):7*10^(-6)]; + +vo2=Voinf+((V1-Voinf)*exp(-(t22-t1-tau)/tau)); + +plot(t11,vo1); + +plot(t22,vo2); + +xlabel("time(t)","fontsize", 6); + +ylabel("vo(t)","fontsize", 6); + title("Step Response of the Circuit","fontsize", 8);
\ No newline at end of file |