diff options
Diffstat (limited to '839')
-rwxr-xr-x | 839/CH15/EX15.4/Example_15_4.sce | 108 | ||||
-rwxr-xr-x | 839/CH22/EX22.5/Example_22_5.sce | 198 | ||||
-rwxr-xr-x | 839/CH22/EX22.6/Example_22_6.sce | 113 | ||||
-rwxr-xr-x | 839/CH25/EX25.4/Example_25_4.sce | 142 | ||||
-rwxr-xr-x | 839/CH6/EX6.2/Example_6_2.sce | 114 |
5 files changed, 338 insertions, 337 deletions
diff --git a/839/CH15/EX15.4/Example_15_4.sce b/839/CH15/EX15.4/Example_15_4.sce index 2a1724600..857829a79 100755 --- a/839/CH15/EX15.4/Example_15_4.sce +++ b/839/CH15/EX15.4/Example_15_4.sce @@ -1,54 +1,54 @@ -//clear//
-clear;
-clc;
-
-//Example 15.4
-//Given
-N = 28;
-xF = 0.5/12; // [ft]
-yF = 0.035/12; //[ft]
-km = 26; // [Btu/ft-h-F]
-AT = 2.830; //[ft^2/ft]
-Ab = 0.416; //[ft^2/ft]
-hi = 1500; //[Btu/ft^2-h-F]
-G = 5000; //[lb/h-ft^2]
-Tavg = 130; //[F]
-Tw = 250; //[F]
-mu = 0.046; //[lb/ft-h], from Appendix 8
-Cp = 0.25; //[Btu/lb-F], from Appendix 15
-k = 0.0162; //[Btu/ft-h-F], from Appendix 12
-ID_shell = 3.068/12; //[ft], from Appendix 5
-OD_pipe = 1.9/12; //[ft], from Appendix 5
-//cross sectional area of shell space
-Ac = %pi/4*(ID_shell^2-OD_pipe^2)-N*xF*yF //[ft^2]
-//The perimeter of air space
-Ap = %pi*ID_shell+AT; //[ft]
-//hydraulic radius
-rh = Ac/Ap; //[ft]
-//equivalent diameter
-De = 4*rh; //[ft]
-//Reynolds Number
-Nre = De*h/mu
-//In computing mu_w the resistance of the wall and the steam film
-//are considered negligible, so
-mu_w = 0.0528; //[lb/ft-h]
-Npr = mu*Cp/k
-//Using Fig. 15.17, the heat transfer factor is
-jh = 0.0031;
-ho = jh*Cp*G*(mu/mu_w)^0.14/Npr^(2/3); //[Btu/ft^2-h-F]
-
-//For rectangular fins, disreagrding the contribution of the ends of the fins to
-//the perimeter, Lp = 2L and S = Lyf, where yf is the fin thickness and L is the
-//length of the fin. Then, from Eq.(15.11)
-aFxF = xF*sqrt(2*ho/(km*yF));
-//From Fig. 15.16
-netaF = 0.93;
-Dt = 1.610/12; //[ft], from Appendix 5
-DLbar = (OD_pipe-Dt)/log(OD_pipe/Dt); //[ft]
-Ai = %pi*Dt*1.0; //[ft^2]
-AF = AT-Ab; //[ft^2/ft]
-xw = (OD_pipe-Dt)/2; //[ft]
-
-//Using Eq.(15.10), the overall coefficient
-Ut = 1/(Ai/(ho*(netaF*AF+Ab))+(xw*Dt/(km*DLbar))+1/hi);//[Btu/ft^2-h-F]
-disp('Btu/ft^2-h-F',Ut,'The overall heat transfer coefficent is')
+//clear// +clear; +clc; + +//Example 15.4 +//Given +N = 28; +xF = 0.5/12; // [ft] +yF = 0.035/12; //[ft] +km = 26; // [Btu/ft-h-F] +AT = 2.830; //[ft^2/ft] +Ab = 0.416; //[ft^2/ft] +hi = 1500; //[Btu/ft^2-h-F] +G = 5000; //[lb/h-ft^2] +Tavg = 130; //[F] +Tw = 250; //[F] +mu = 0.046; //[lb/ft-h], from Appendix 8 +Cp = 0.25; //[Btu/lb-F], from Appendix 15 +k = 0.0162; //[Btu/ft-h-F], from Appendix 12 +ID_shell = 3.068/12; //[ft], from Appendix 5 +OD_pipe = 1.9/12; //[ft], from Appendix 5 +//cross sectional area of shell space +Ac = %pi/4*(ID_shell^2-OD_pipe^2)-N*xF*yF //[ft^2] +//The perimeter of air space +Ap = %pi*ID_shell+AT; //[ft] +//hydraulic radius +rh = Ac/Ap; //[ft] +//equivalent diameter +De = 4*rh; //[ft] +//Reynolds Number +Nre = De*G/mu +//In computing mu_w the resistance of the wall and the steam film +//are considered negligible, so +mu_w = 0.0528; //[lb/ft-h] +Npr = mu*Cp/k +//Using Fig. 15.17, the heat transfer factor is +jh = 0.0031; +ho = jh*Cp*G*(mu/mu_w)^0.14/Npr^(2/3); //[Btu/ft^2-h-F] + +//For rectangular fins, disregarding the contribution of the ends of the fins to +//the perimeter, Lp = 2L and S = Lyf, where yf is the fin thickness and L is the +//length of the fin. Then, from Eq.(15.11) +aFxF = xF*sqrt(2*ho/(km*yF)); +//From Fig. 15.16 +netaF = 0.93; +Dt = 1.610/12; //[ft], from Appendix 5 +DLbar = (OD_pipe-Dt)/log(OD_pipe/Dt); //[ft] +Ai = %pi*Dt*1.0; //[ft^2] +AF = AT-Ab; //[ft^2/ft] +xw = (OD_pipe-Dt)/2; //[ft] + +//Using Eq.(15.10), the overall coefficient +Ut = 1/(Ai/(ho*(netaF*AF+Ab))+(xw*Dt/(km*DLbar))+1/hi);//[Btu/ft^2-h-F] +disp('Btu/ft^2-h-F',Ut,'The overall heat transfer coefficient is')
\ No newline at end of file diff --git a/839/CH22/EX22.5/Example_22_5.sce b/839/CH22/EX22.5/Example_22_5.sce index 76d8d4dfa..685e0f917 100755 --- a/839/CH22/EX22.5/Example_22_5.sce +++ b/839/CH22/EX22.5/Example_22_5.sce @@ -1,99 +1,99 @@ -//clear//
-clear;
-clc;
-
-//Example 22.5
-//Solution
-//Equlibrium data are shown in Fig.22.22
-//By a heat balance similar to that of Eample 22.3
-//The temperature rise of the liqui was estimated
-//to be
-delta_T = 12.5; //[C]
-//Basis:
-dry_gas_in = 100; //[mol]
-sol_in = 140; //[mol]
-N2_in = 87; //[mol]
-CO2_in = 10; //[mol]
-EO_in = 3; //[mol]
-N2_out = 87; //[mol]
-CO2_out = 10; //[mol]
-EO_out = 3*0.02; //[mol]
-IN = N2_in+CO2_in+EO_in; //[mol]
-OUT = N2_out+CO2_out+EO_out; //[mol]
-//Assuming negligible CO2 absorption and neglect effect of H2O on
-//gas composition.
-//At top:
-xt = 0.004;
-yt = EO_out/OUT;
-//Moles of EO absorbed
-EO_abs = 3*0.98; //[mol]
-//Moles of EO absorbed in water
-EO_H2O = 140*0.0004; //[mol]
-//At bottom:
-xb = (EO_abs+EO_H2O)/(140+EO_abs);
-yb = 0.03;
-//From Fig 22.22
-y = [0.03,0.015,0.005,0.0006]';
-delta_y1 = [0.008,0.0006,0.0024,0.0003]';
-
-for i = 1:length(y)-1
- delta_y = y(i)-y(i+1);
- delta_yL = (delta_y1(i)-delta_y1(i+1))/log(delta_y1(i)/delta_y1(i+1));
- Noy1(i) = delta_y/delta_yL;
-end
-Noy = sum(Noy1);
-
-//Column diameter:
-//Using generalize pressure-drop correlation, Fig.22.6
-//Based on the inlet gas,
-Mbar = 0.87*28+0.1*44+0.03*44;
-//At 40C,
-rho_y = 30.1/359*20*273/313 //[lb/ft^3]
-rho_x = 62.2; //[lb/ft^3]
-//Let A = Gx/Gy*sqrt(rho_y/(rho_x-rho_y))
-A = 1.4*18/(1*30.1)*sqrt(rho_y/(rho_x-rho_y));
-//From Fig. 22.6, for
-delta_P = 0.5; //[in.H2O/ft]
-//Let B = Gy^2*Fp*mux^0.1/(rho_y*(rho_x-rho_y)*gc)
-B = 0.045;
-//From Table 22.1,
-Fp = 40;
-mu = 0.656; //[cP]
-//so
-Gy = sqrt(B*(rho_y)*(rho_x-rho_y)*32.2/(Fp*mu^0.1)); //[lb/ft^2-h]
-//or
-Gy = Gy*3600; //[lb/ft^2-s]
-Gx = 1.4*18/(1*Mbar)*Gy; //[lb/f^2-s]
-//For a feed rate
-F = 10000*Mbar; //[lb/h]
-S = F/Gx; //[ft^2]
-D = sqrt(S*4/%pi); //[ft]
-//Column heigth:
-//From Fig. 22.20 at Gy = 500 and Gx = 1500
-Hy_NH3 = 1.4; //[ft]
-mu_40 =0.0181*10^-2; //[P], Appendix 8
-Dv = 7.01*10^-3; //[cm^2/s], from Eq.(21.25)
-rho = 2.34*10^-2; //[lb/ft^3]
-Nsc = mu_40/(rho*Dv);
-//Form Table 22.1,
-fp = 1.36;
-Hy_EO = 1.4*(1.1/0.66)^0.5*1/1.36*(Gy/500)^0.3*(1500/Gx)^0.4; //[ft]
-//Form Fig. 22.19,
-Hx_O2 = 0.9; //[ft]
-Gx1 = 1500;
-mu1 = 0.00656; //[P]
-rho1 = 1; //[lb/ft^3]
-//Using Eq.(21.28)
-Dv1 = 2.15*10^-5; //[cm^2/s]
-Nsc1 = mu1/(rho1*Dv1);
-//Using Eq.(22.35), with the correction factor fp and Nsc = 381,
-//for O2 in water at 25 C
-Hx_EO = Hx_O2*(Gx/(mu1*100)/(Gx1/0.894))^0.3*(Nsc1/381)^0.5/1.36; //[ft]
-//From Fig 22.22, the average value of m
-m = 1.0;
-//From Eq.(22.30)
-HOy = 1.71+(1*0.96)/1.4; //[ft]
-
-disp(NOy,'number of transfer units required')
-disp('ft',D,'diameter of the column')
-disp('ft',HOy,'packing height')
+//clear// +clear; +clc; + +//Example 22.5 +//Solution +//Equlibrium data are shown in Fig.22.22 +//By a heat balance similar to that of Eample 22.3 +//The temperature rise of the liqui was estimated +//to be +delta_T = 12.5; //[C] +//Basis: +dry_gas_in = 100; //[mol] +sol_in = 140; //[mol] +N2_in = 87; //[mol] +CO2_in = 10; //[mol] +EO_in = 3; //[mol] +N2_out = 87; //[mol] +CO2_out = 10; //[mol] +EO_out = 3*0.02; //[mol] +IN = N2_in+CO2_in+EO_in; //[mol] +OUT = N2_out+CO2_out+EO_out; //[mol] +//Assuming negligible CO2 absorption and neglect effect of H2O on +//gas composition. +//At top: +xt = 0.004; +yt = EO_out/OUT; +//Moles of EO absorbed +EO_abs = 3*0.98; //[mol] +//Moles of EO absorbed in water +EO_H2O = 140*0.0004; //[mol] +//At bottom: +xb = (EO_abs+EO_H2O)/(140+EO_abs); +yb = 0.03; +//From Fig 22.22 +y = [0.03,0.015,0.005,0.0006]'; +delta_y1 = [0.008,0.0006,0.0024,0.0003]'; + +for i = 1:length(y)-1 + delta_y = y(i)-y(i+1); + delta_yL = (delta_y1(i)-delta_y1(i+1))/log(delta_y1(i)/delta_y1(i+1)); + Noy1(i) = delta_y/delta_yL; +end +Noy = sum(Noy1); + +//Column diameter: +//Using generalize pressure-drop correlation, Fig.22.6 +//Based on the inlet gas, +Mbar = 0.87*28+0.1*44+0.03*44; +//At 40C, +rho_y = 30.1/359*20*273/313 //[lb/ft^3] +rho_x = 62.2; //[lb/ft^3] +//Let A = Gx/Gy*sqrt(rho_y/(rho_x-rho_y)) +A = 1.4*18/(1*30.1)*sqrt(rho_y/(rho_x-rho_y)); +//From Fig. 22.6, for +delta_P = 0.5; //[in.H2O/ft] +//Let B = Gy^2*Fp*mux^0.1/(rho_y*(rho_x-rho_y)*gc) +B = 0.045; +//From Table 22.1, +Fp = 40; +mu = 0.656; //[cP] +//so +Gy = sqrt(B*(rho_y)*(rho_x-rho_y)*32.2/(Fp*mu^0.1)); //[lb/ft^2-h] +//or +Gy = Gy*3600; //[lb/ft^2-s] +Gx = 1.4*18/(1*Mbar)*Gy; //[lb/f^2-s] +//For a feed rate +F = 10000*Mbar; //[lb/h] +S = F/Gx; //[ft^2] +D = sqrt(S*4/%pi); //[ft] +//Column heigth: +//From Fig. 22.20 at Gy = 500 and Gx = 1500 +Hy_NH3 = 1.4; //[ft] +mu_40 =0.0181*10^-2; //[P], Appendix 8 +Dv = 7.01*10^-3; //[cm^2/s], from Eq.(21.25) +rho = 2.34*10^-2; //[lb/ft^3] +Nsc = mu_40/(rho*Dv); +//Form Table 22.1, +fp = 1.36; +Hy_EO = 1.4*(1.1/0.66)^0.5*1/1.36*(Gy/500)^0.3*(1500/Gx)^0.4; //[ft] +//Form Fig. 22.19, +Hx_O2 = 0.9; //[ft] +Gx1 = 1500; +mu1 = 0.00656; //[P] +rho1 = 1; //[lb/ft^3] +//Using Eq.(21.28) +Dv1 = 2.15*10^-5; //[cm^2/s] +Nsc1 = mu1/(rho1*Dv1); +//Using Eq.(22.35), with the correction factor fp and Nsc = 381, +//for O2 in water at 25 C +Hx_EO = Hx_O2*(Gx/(mu1*100)/(Gx1/0.894))^0.3*(Nsc1/381)^0.5/1.36; //[ft] +//From Fig 22.22, the average value of m +m = 1.0; +//From Eq.(22.30) +HOy = 1.71+(1*0.96)/1.4; //[ft] + +disp(Noy,'number of transfer units required') +disp('ft',D,'diameter of the column') +disp('ft',HOy,'packing height')
\ No newline at end of file diff --git a/839/CH22/EX22.6/Example_22_6.sce b/839/CH22/EX22.6/Example_22_6.sce index 326e3f8e9..bea069cab 100755 --- a/839/CH22/EX22.6/Example_22_6.sce +++ b/839/CH22/EX22.6/Example_22_6.sce @@ -1,56 +1,57 @@ -//clear//
-clear;
-clc;
-
-//Example 22.6
-//Solution
-rho_m = 62.2/18; //[mol/ft^3]
-//kya = 0.025*Gy^0.7*Gx^0.25
-H2ObySO2 = 2*0.98964/0.01036;
-//and
-xb = 1/(H2ObySO2+1);
-//The molal mass velocity of the feed gas Gm is
-Gm_in = 200/29*(1/0.8); //[mol/ft^2-h]
-SO2_in = Gm_in*0.2; //[mol/ft^2-h]
-Air_in = Gm_in*0.8; //[mol/ft^2-h]
-Air_out = Air_in; //[mol/ft^2-h]
-SO2_out = Air_out*(0.005/(1-0.005)); //[mol/ft^2-h]
-SO2_abs = SO2_in-SO2_out; //[mol/ft^2-h]
-H2O_in = H2ObySO2*SO2_abs; //[mol/ft^2-h]
-//Operating line
-x = 0:6;
-x = x/10^3;
-A = x./(1-x);
-B = H2O_in/Air_in*A+(0.005/0.995);
-y = B./(B+1);
-plot(x,y)
-xgrid();
-xlabel('x');
-ylabel('y');
-//legend('20C','30C','40C');
-title('x vs y');
-Gxbar = H2O_in*18.02+SO2_abs*64.1/2; //[lb/ft^2-h]
-kxa = 0.131*Gxbar^0.82; //[mol/ft^3-h]
-//The gas film coefficients are calculated for the bottom
-//and the top of the tower:
-//At bottom:
-Gy_B = (Air_in*29)+(SO2_in*64.1); //[lb/ft^2-h]
-kya_B = 0.025*Gy_B^0.7*Gx^0.25; //[mol/ft^3-h]
-//At top:
-Gy_T = (Air_out*29)+(SO2_out*64.1); //[lb/ft^2-h]
-kya_T = 0.025*Gy_T^0.7*Gx^0.25; //[mol/ft^3-h]
-//Assuming
-yLbar = 0.82
-C = kxa*yLbar/kya_B;
-//a line from (yb,xb) with a slope of -C, gives
-yi = 0.164;
-yLbar = 0.818;
-m = 20.1
-Kya_prime = 1/(yLbar/kya_B+m/kxa); //[mol/ft^3-h]
-//The fraction of the total resistance that is in the liquid is
-Rf = m/kxa/(1/Kya_prime);
-//For different values of y1
-y1 =[0.2,0.15,0.1,0.05,0.02,0.005]';
-delta_y1 = [0.103,0.084,0.062,0.034,0.015,0.005]';
-y1i = [0.164,0.118,0.074,0.034,0.012,0.002]';
-delta_yi = y1-y1i;
+//clear// +clear; +clc; + + +//Example 22.6 +//Solution +rho_m = 62.2/18; //[mol/ft^3] +//kya = 0.025*Gy^0.7*Gx^0.25 +H2ObySO2 = 2*0.98964/0.01036; +//and +xb = 1/(H2ObySO2+1); +//The molal mass velocity of the feed gas Gm is +Gm_in = 200/29*(1/0.8); //[mol/ft^2-h] +SO2_in = Gm_in*0.2; //[mol/ft^2-h] +Air_in = Gm_in*0.8; //[mol/ft^2-h] +Air_out = Air_in; //[mol/ft^2-h] +SO2_out = Air_out*(0.005/(1-0.005)); //[mol/ft^2-h] +SO2_abs = SO2_in-SO2_out; //[mol/ft^2-h] +H2O_in = H2ObySO2*SO2_abs; //[mol/ft^2-h] +//Operating line +x = 0:6; +x = x/10^3; +A = x./(1-x); +B = H2O_in/Air_in*A+(0.005/0.995); +y = B./(B+1); +plot(x,y) +xgrid(); +xlabel('x'); +ylabel('y'); +//legend('20C','30C','40C'); +title('x vs y'); +Gxbar = H2O_in*18.02+SO2_abs*64.1/2; //[lb/ft^2-h] +kxa = 0.131*Gxbar^0.82; //[mol/ft^3-h] +//The gas film coefficients are calculated for the bottom +//and the top of the tower: +//At bottom: +Gy_B = (Air_in*29)+(SO2_in*64.1); //[lb/ft^2-h] +kya_B = 0.025*Gy_B^0.7*Gxbar^0.25; //[mol/ft^3-h] +//At top: +Gy_T = (Air_out*29)+(SO2_out*64.1); //[lb/ft^2-h] +kya_T = 0.025*Gy_T^0.7*Gxbar^0.25; //[mol/ft^3-h] +//Assuming +yLbar = 0.82 +C = kxa*yLbar/kya_B; +//a line from (yb,xb) with a slope of -C, gives +yi = 0.164; +yLbar = 0.818; +m = 20.1 +Kya_prime = 1/(yLbar/kya_B+m/kxa); //[mol/ft^3-h] +//The fraction of the total resistance that is in the liquid is +Rf = m/kxa/(1/Kya_prime); +//For different values of y1 +y1 =[0.2,0.15,0.1,0.05,0.02,0.005]'; +delta_y1 = [0.103,0.084,0.062,0.034,0.015,0.005]'; +y1i = [0.164,0.118,0.074,0.034,0.012,0.002]'; +delta_yi = y1-y1i;
\ No newline at end of file diff --git a/839/CH25/EX25.4/Example_25_4.sce b/839/CH25/EX25.4/Example_25_4.sce index 7369eb582..4a74a8785 100755 --- a/839/CH25/EX25.4/Example_25_4.sce +++ b/839/CH25/EX25.4/Example_25_4.sce @@ -1,71 +1,71 @@ -//clear//
-clear;
-clc;
-
-//Example 25.4
-y = 0.0012;
-vdot = 16000; //[ft^3/min]
-P = 760; //[mm Hg]
-rho_b = 30; //[lb/ft^3]
-Lun = 0.5; //[ft]
-
-//Solution
-//(a)
-//Form the hand book
-Pprime = 151; //[mm Hg]
-fs = Pprime; //[mm Hg]
-rho_L = 0.805; //[g/cm^3], at 20C
-Tnb = 79.6; //[C]
-rho_e = 0.75; //[g/cm^3]
-M = 72.1;
-V = M/rho_e;
-p = y*P; //[mm Hg]
-f = p; //[mm Hg]
-//At 35C
-T = 35+273; //[K]
-A = T/V*log10(fs/f);
-//Form Fig. 25.4,
-//the volume adsorbed
-V_ads = 24; //[cm^3/100 g carbon]
-Wsat = V_ads*rho_e; //[g/100 g carbon]
-W0 = 1/3*Wsat; //[g/100 g carbon]
-Working_capacity = Wsat-W0; //[g/100 g carbon]
-//or
-Working_capacity = Working_capacity/100; //[lb/lb carbon]
-disp(Working_capacity,'Working capacity of the bed is')
-
-//(b)
-u0 = 1; //[ft/s]
-A = vdot/u0; //[ft^2]
-D = sqrt(4*A/%pi); //[ft]
-Abed = 10*27; //[ft^2]
-L1 = 4; //[ft]
-c0 = y/359*273/298*72.1; //[lb/ft^3]
-//Form Eq.(25.3)
-tstar = L1*rho_b*(Working_capacity)/(u0*c0*3600); //[h]
-Lu1 = L-Lun; //[ft]
-tb1 = Lu1/L*tstar; //[h]
-
-//if
-L2 = 3; //[ft]
-Lu2 = L2-Lun;
-tb2 = Lu2/L*tstar; //[h]
-//checking for delta_P
-//Using Eq.(7.22)
-phi_s = 0.7; //from Table 28.1
-eps = 0.35; //from Table 7.1
-mu = 1.21*10^-5; //[lb/ft-s]
-rho = 0.074; //[lb/ft^3]
-//For a 4*10-mesh carbon
-Dp = 1.108*10^-2; //[ft]
-deltaPbyL = 150*1*mu*(1-eps)^2/(32.2*phi_s^2*Dp^2*eps^3)+(1.75*rho*1^2*(1-eps)/(32.2*0.7*Dp*eps^3)); //[lbf/ft^2-ft]
-deltaPbyL = deltaPbyL*12/62.4; //[in. H2O/ft]
-//for
-L = 3;
-deltaP = 3*deltaPbyL; //[in. H2O]
-//which satisfactory.
-mc = 2*(10*27*3)*30; //[lb]
-
-disp('ft',L2,'Allowing for uncertainties in the calculations, satisfactory bed length will be')
-disp('ft/s',u0,'gas velocity needed')
-disp('lb',mc,'carbon needed')
+//clear// +clear; +clc; + +//Example 25.4 +y = 0.0012; +vdot = 16000; //[ft^3/min] +P = 760; //[mm Hg] +rho_b = 30; //[lb/ft^3] +Lun = 0.5; //[ft] +L = 3; + +//Solution +//(a) +//Form the hand book +Pprime = 151; //[mm Hg] +fs = Pprime; //[mm Hg] +rho_L = 0.805; //[g/cm^3], at 20C +Tnb = 79.6; //[C] +rho_e = 0.75; //[g/cm^3] +M = 72.1; +V = M/rho_e; +p = y*P; //[mm Hg] +f = p; //[mm Hg] +//At 35C +T = 35+273; //[K] +A = T/V*log10(fs/f); +//Form Fig. 25.4, +//the volume adsorbed +V_ads = 24; //[cm^3/100 g carbon] +Wsat = V_ads*rho_e; //[g/100 g carbon] +W0 = 1/3*Wsat; //[g/100 g carbon] +Working_capacity = Wsat-W0; //[g/100 g carbon] +//or +Working_capacity = Working_capacity/100; //[lb/lb carbon] +disp(Working_capacity,'Working capacity of the bed is') + +//(b) +u0 = 1; //[ft/s] +A = vdot/u0; //[ft^2] +D = sqrt(4*A/%pi); //[ft] +Abed = 10*27; //[ft^2] +L1 = 4; //[ft] +c0 = y/359*273/298*72.1; //[lb/ft^3] +//Form Eq.(25.3) +tstar = L1*rho_b*(Working_capacity)/(u0*c0*3600); //[h] +Lu1 = L-Lun; //[ft] +tb1 = Lu1/L*tstar; //[h] + +//if +L2 = 3; //[ft] +Lu2 = L2-Lun; +tb2 = Lu2/L*tstar; //[h] +//checking for delta_P +//Using Eq.(7.22) +phi_s = 0.7; //from Table 28.1 +eps = 0.35; //from Table 7.1 +mu = 1.21*10^-5; //[lb/ft-s] +rho = 0.074; //[lb/ft^3] +//For a 4*10-mesh carbon +Dp = 1.108*10^-2; //[ft] +deltaPbyL = 150*1*mu*(1-eps)^2/(32.2*phi_s^2*Dp^2*eps^3)+(1.75*rho*1^2*(1-eps)/(32.2*0.7*Dp*eps^3)); //[lbf/ft^2-ft] +deltaPbyL = deltaPbyL*12/62.4; //[in. H2O/ft] +//for +deltaP = 3*deltaPbyL; //[in. H2O] +//which satisfactory. +mc = 2*(10*27*3)*30; //[lb] + +disp('ft',L2,'Allowing for uncertainties in the calculations, satisfactory bed length will be') +disp('ft/s',u0,'gas velocity needed') +disp('lb',mc,'carbon needed')
\ No newline at end of file diff --git a/839/CH6/EX6.2/Example_6_2.sce b/839/CH6/EX6.2/Example_6_2.sce index 4abb1d09a..ed2213d65 100755 --- a/839/CH6/EX6.2/Example_6_2.sce +++ b/839/CH6/EX6.2/Example_6_2.sce @@ -1,57 +1,57 @@ -//clear//
-clear;
-clc;
-
-//Example 6.2
-//Given
-Tr = 1000; //[R]
-pr = 20; //[atm]
-Ma_a = 0.05;
-gama = 1.4;
-gc = 32.174; //[ft-lb/lbf-s^2]
-M = 29;
-R = 1545;
-//(a)
-//Using Eq.(6.45)
-A = 2*(1+((gama-1)/2)*Ma_a^2)/((gama+1)*Ma_a^2);
-fLmax_rh = (1/Ma_a^2-1-(gama+1)*log(A)/2)/gama
-
-//(b)
-//Using Eq.(6.28), the pressure at the end of the isentropic nozzle pa
-A = (1+(gama-1)*(Ma_a^2)/2);
-pa = pr/(A^(gama/(gama-1))) // [atm]
-//From Example 6.1, the density of air at 20atm and 1000R is 0.795 lb/ft^3
-//Using Eq.(6.17), the acoustic velocity
-Aa = sqrt(gc*gama*Tr*R/M) //[m/s]
-//The velocity at the entrance of the pipe
-ua = Ma_a*Aa //[m/s]
-//When L_b = L_max, the gas leaves the pipe at the asterisk conditions, where
-Ma_b = 1;
-// Using Eq.(6.43)
-A = (gama-1)/2;
-Tstar = Tr *(1+A*Ma_a^2)/(1+A*Ma_b^2) // [K]
-// Using Eq.(6.44)
-rho_star = 0.795*Ma_a/sqrt(2*(1+(gama-1)*Ma_a^2/2)/(2.4)) //[lb/ft^3]
-//Using Eq.(6.39)
-pstar = p0*Ma_a/sqrt(1.2) // [atm]
-//Mass velocity through the entire pipe
-G = 0.795*ua //[lb/ft^2-s]
-ustar = G/rho_star //[ft/s]
-
-//(c)
-//Using Eq.(6.45) with f_Lmax_rh = 400
-
-err = 1;
-eps = 10^-3;
-Ma_ac = rand(1,1);
-i =1;
-while((err>eps))
- A = 2*(1+((gama-1)/2)*Ma_ac^2)/((gama+1)*Ma_ac^2);
- B = gama*400+1+(gama+1)*log(A)/2;
- Ma_anew = sqrt(1/B);
- err = Ma_ac-Ma_anew;
- Ma_ac = Ma_anew;
-end
-Ma_ac;
-uac = Ma_ac*ua/Ma_a //[ft/s]
-Gc = uac*0.795 //[lb/ft^2-s]
+//clear// +clear; +clc; + +//Example 6.2 +//Given +Tr = 1000; //[R] +pr = 20; //[atm] +Ma_a = 0.05; +gama = 1.4; +gc = 32.174; //[ft-lb/lbf-s^2] +M = 29; +R = 1545; +//(a) +//Using Eq.(6.45) +A = 2*(1+((gama-1)/2)*Ma_a^2)/((gama+1)*Ma_a^2); +fLmax_rh = (1/Ma_a^2-1-(gama+1)*log(A)/2)/gama + +//(b) +//Using Eq.(6.28), the pressure at the end of the isentropic nozzle pa +A = (1+(gama-1)*(Ma_a^2)/2); +pa = pr/(A^(gama/(gama-1))) // [atm] +//From Example 6.1, the density of air at 20atm and 1000R is 0.795 lb/ft^3 +//Using Eq.(6.17), the acoustic velocity +Aa = sqrt(gc*gama*Tr*R/M) //[m/s] +//The velocity at the entrance of the pipe +ua = Ma_a*Aa //[m/s] +//When L_b = L_max, the gas leaves the pipe at the asterisk conditions, where +Ma_b = 1; +// Using Eq.(6.43) +A = (gama-1)/2; +Tstar = Tr *(1+A*Ma_a^2)/(1+A*Ma_b^2) // [K] +// Using Eq.(6.44) +rho_star = 0.795*Ma_a/sqrt(2*(1+(gama-1)*Ma_a^2/2)/(2.4)) //[lb/ft^3] +//Using Eq.(6.39) +pstar = pa*Ma_a/sqrt(1.2) // [atm] +//Mass velocity through the entire pipe +G = 0.795*ua //[lb/ft^2-s] +ustar = G/rho_star //[ft/s] + +//(c) +//Using Eq.(6.45) with f_Lmax_rh = 400 + +err = 1; +eps = 10^-3; +Ma_ac = rand(1,1); +i =1; +while((err > eps)) + A = 2*(1+((gama-1)/2)*Ma_ac^2)/((gama+1)*Ma_ac^2); + B = gama*400+1+(gama+1)*log(A)/2; + Ma_anew = sqrt(1/B); + err = Ma_ac-Ma_anew; + Ma_ac = Ma_anew; +end +Ma_ac; +uac = Ma_ac*ua/Ma_a //[ft/s] +Gc = uac*0.795 //[lb/ft^2-s]
\ No newline at end of file |