summaryrefslogtreecommitdiff
path: root/767/CH6
diff options
context:
space:
mode:
Diffstat (limited to '767/CH6')
-rwxr-xr-x767/CH6/EX6.10.1/Ch06Exa6_10_1.sci9
-rwxr-xr-x767/CH6/EX6.10.2/Ch06Exa6_10_2.sci15
-rwxr-xr-x767/CH6/EX6.2.1/Ch06Exa6_2_1.sci7
-rwxr-xr-x767/CH6/EX6.3.1/Ch06Exa6_3_1.sci7
-rwxr-xr-x767/CH6/EX6.3.2/Ch06Exa6_3_2.sci52
-rwxr-xr-x767/CH6/EX6.4.1/Ch06Exa6_4_1.sci7
-rwxr-xr-x767/CH6/EX6.5.1/Ch06Exa6_5_1.sci7
-rwxr-xr-x767/CH6/EX6.5.2/Ch06Exa6_5_2.sci13
-rwxr-xr-x767/CH6/EX6.5.3/Ch06Exa6_5_3.sci7
-rwxr-xr-x767/CH6/EX6.7.1/Ch06Exa6_7_1.sci15
-rwxr-xr-x767/CH6/EX6.7.2/Ch06Exa6_7_2.sci8
-rwxr-xr-x767/CH6/EX6.7.3/Ch06Exa6_7_3.sci9
-rwxr-xr-x767/CH6/EX6.7.4/Ch06Exa6_7_4.sci8
-rwxr-xr-x767/CH6/EX6.8.1/Ch06Exa6_8_1.sci10
-rwxr-xr-x767/CH6/EX6.9.1/Ch06Exa6_9_1.sci7
-rwxr-xr-x767/CH6/EX6.9.2/Ch06Exa6_9_2.sci10
16 files changed, 191 insertions, 0 deletions
diff --git a/767/CH6/EX6.10.1/Ch06Exa6_10_1.sci b/767/CH6/EX6.10.1/Ch06Exa6_10_1.sci
new file mode 100755
index 000000000..143a26da4
--- /dev/null
+++ b/767/CH6/EX6.10.1/Ch06Exa6_10_1.sci
@@ -0,0 +1,9 @@
+// Scilab code Exa6.10.1 : To calculate the value of magnetic field of the electron whose energy is given Page 274(2011)
+q = 1.602e-019; // Charge of an electron, C
+r = 0.28; // Radius of stable orbit,m
+E = 70*1.6e-013; // Energy of the electron, j
+c = 3e+08; // Velocity of light, m/s
+B = E/(e*r*c); // Magnetic field, T
+printf("\nThe magnetic field of the electron : %4.2f T", B)
+// Result
+// The magnetic field of the electron : 0.83 T \ No newline at end of file
diff --git a/767/CH6/EX6.10.2/Ch06Exa6_10_2.sci b/767/CH6/EX6.10.2/Ch06Exa6_10_2.sci
new file mode 100755
index 000000000..005e8f393
--- /dev/null
+++ b/767/CH6/EX6.10.2/Ch06Exa6_10_2.sci
@@ -0,0 +1,15 @@
+// Scilab code Exa6.10.2 : To calculate the radius of proton orbit in synchrotron of given energy Page 275(2011)
+c= 3e+08; // Speed of light in vacuum, m/s
+q = 1.602e-019; // Charge on proton, coulomb
+amu = 931; // Energy equivalent of 1 amu, MeV
+m = 938; // Rest mass of a proton, MeV
+KE = 12e+03; // Kinetic energy of proton, MeV
+B = 1.9; // Magnetic field, T
+E = m + KE; // Total energy of proton, MeV
+// As E = m*amu, solving for m, the mass of proton
+m = E/amu*1.672e-027; // Proton mass in motion, kg
+v = 0.9973*c; // Velocity of the proton, m/s
+r = m*v/(B*q); // Radius of the proton, m
+printf("\nRadius of the proton orbit : %4.2f m", r)
+// Result
+// Radius of the proton orbit: 22.84 m \ No newline at end of file
diff --git a/767/CH6/EX6.2.1/Ch06Exa6_2_1.sci b/767/CH6/EX6.2.1/Ch06Exa6_2_1.sci
new file mode 100755
index 000000000..8d9b959a0
--- /dev/null
+++ b/767/CH6/EX6.2.1/Ch06Exa6_2_1.sci
@@ -0,0 +1,7 @@
+// Scilab code Exa6.2.1 : To calculate the kinetic energy of protons : Page 264 (2011)
+q = 1; // Number of proton,
+V = 800; // Voltage applied to the dome, kV
+E = q*V; // The kinetic energy of proton,keV
+printf("\nThe kinetic energy of proton : %d keV", E);
+// Result
+// The kinetic energy of proton : 800 keV \ No newline at end of file
diff --git a/767/CH6/EX6.3.1/Ch06Exa6_3_1.sci b/767/CH6/EX6.3.1/Ch06Exa6_3_1.sci
new file mode 100755
index 000000000..7a10272ab
--- /dev/null
+++ b/767/CH6/EX6.3.1/Ch06Exa6_3_1.sci
@@ -0,0 +1,7 @@
+// Scilab code Exa6.3.1 : To calculate the kinetic energy of protons in Van de Graff accelerator: Page 265 (2011)
+q = 1; // Number of proton,
+V = 7; // Voltage applied to the dome, MV
+E = q*V; // The kinetic energy of proton,MeV
+printf("\nThe kinetic energy of proton : %d MeV", E);
+// Result
+// The kinetic energy of proton : 7 MeV
diff --git a/767/CH6/EX6.3.2/Ch06Exa6_3_2.sci b/767/CH6/EX6.3.2/Ch06Exa6_3_2.sci
new file mode 100755
index 000000000..13419dcba
--- /dev/null
+++ b/767/CH6/EX6.3.2/Ch06Exa6_3_2.sci
@@ -0,0 +1,52 @@
+// Scilab code Exa6.3.2 : To calculate the kinetic energy of protons and no. of possibile reactions: Page 265 (2011)
+V = 5; // Voltage of accelerator, MV
+// Declare three cells (for three reactions): Page no. : 133(2011)
+ R1 = cell(3,2)
+ R2 = cell(10,2)
+// Enter data for first cell (Reaction)
+R1(1,1).entries = "p";
+R1(1,2).entries = 1;
+R1(2,1).entries = 'd';
+R1(2,2).entries = 1;
+R1(3,1).entries = 'He';
+R1(3,2).entries = 2;
+E_p = (R1(1,2).entries)*V
+E_d = (R1(2,2).entries)*V
+E_He = (R1(3,2).entries)*V
+ // Enter data for second cell (Reaction)
+ R2(1,1).entries = "p"
+ R2(1,2).entries = 1
+ R2(2,1).entries = "N"
+ R2(2,2).entries = 14
+ R2(3,1).entries = "O"
+ R2(3,2).entries = 15
+ R2(4,1).entries = "y"
+ R2(4,2).entries = 0
+ R2(5,1).entries = "d"
+ R2(5,2).entries = 1
+ R2(6,1).entries = "n"
+ R2(6,2).entries = 0
+ R2(7,1).entries = "He"
+ R2(7,2).entries = 3
+ R2(8,1).entries = "C"
+ R2(8,2).entries = 13
+ R2(9,1).entries = "He"
+ R2(9,2).entries = 4
+ R2(10,1).entries = "C"
+ R2(10,2).entries = 12
+ printf("\nProtons energy = -%d MeV \n Deuterons energy = -%d MeV \n Double charged He-3 = -%d MeV", E_p, E_d, E_He)
+ printf("\n Possible reaction at these energies are")
+ printf("\n %s + %s(%d) ---> %s(%d)+ %s", R2(1,1).entries,R2(2,1).entries,R2(2,2).entries,R2(3,1).entries,R2(3,2).entries,R2(4,1).entries)
+printf("\n %s + %s(%d) ---> %s(%d) + %s ", R2(5,1).entries,R2(2,1).entries,R2(2,2).entries,R2(3,1).entries,R2(3,2).entries,R2(6,1).entries)
+printf("\n %s(%d) +%s(%d) ---> %s(%d)+ %s", R2(7,1).entries,R2(7,2).entries,R2(8,1).entries,R2(8,2).entries,R2(3,1).entries,R2(3,2).entries,R2(6,1).entries)
+ printf("\n %s(%d) + %s(%d) ---> %s(%d) +%s", R2(9,1).entries,R2(9,2).entries,R2(10,1).entries,R2(10,2).entries,R2(3,1).entries,R2(3,2).entries,R2(6,1).entries)
+
+// Result
+// Protons energy = -5 MeV
+// Deuterons energy = -5 MeV
+// Double charged He-3 = -10 MeV
+// Possible reaction at these energies are
+// p + N(14) ---> O(15)+ y
+// d + N(14) ---> O(15) + n
+// He(3) +C(13) ---> O(15)+ n
+// He(4) + C(12) ---> O(15) +n
diff --git a/767/CH6/EX6.4.1/Ch06Exa6_4_1.sci b/767/CH6/EX6.4.1/Ch06Exa6_4_1.sci
new file mode 100755
index 000000000..9faac51d1
--- /dev/null
+++ b/767/CH6/EX6.4.1/Ch06Exa6_4_1.sci
@@ -0,0 +1,7 @@
+// Scilab code Exa6.4.1 : To calculate the kinetic energy of protons passing through the carbon stripper foil : Page 266 (2011)
+q = 2; // Number of proton,
+V = 15; // Voltage applied to the dome, MV
+E = q*V; // The kinetic energy of proton,MeV
+printf("\nThe kinetic energy of proton : %d MeV", E);
+// Result
+// The kinetic energy of proton : 30 MeV \ No newline at end of file
diff --git a/767/CH6/EX6.5.1/Ch06Exa6_5_1.sci b/767/CH6/EX6.5.1/Ch06Exa6_5_1.sci
new file mode 100755
index 000000000..d640fe3bc
--- /dev/null
+++ b/767/CH6/EX6.5.1/Ch06Exa6_5_1.sci
@@ -0,0 +1,7 @@
+// Scilab code Exa6.5.1 : To calculate the difference between the electron's speed and speed of light. Page 265 (2011)
+v = 2.999999997e+08; // Velocity of the electron, m/s
+c = 3e+08; // Velocity of light,m/s
+D = c-v; // difference between electron's speed and speed of light,m/s
+printf("\nThe difference between electron speed and speed of light : %3.1f m/s", D);
+// Result
+// The difference between electron speed and speed of light : 0.3 m/s \ No newline at end of file
diff --git a/767/CH6/EX6.5.2/Ch06Exa6_5_2.sci b/767/CH6/EX6.5.2/Ch06Exa6_5_2.sci
new file mode 100755
index 000000000..f4f43cd71
--- /dev/null
+++ b/767/CH6/EX6.5.2/Ch06Exa6_5_2.sci
@@ -0,0 +1,13 @@
+// Scilab code Exa6.5.2 : To calculate the length of the first and last drift tubes which accelerate the protons whose frequency and energies are given. Page 268 (2011)
+f = 200e+06; // Frequency of applied the voltage, Hz
+V_0 = 750e+03; // Applied potential difference, V
+q = 1.6e-019; // Charge of proton, C
+m = 1.67e-027; // Mass of proton, Kg
+n_1 = 1; // For first tube
+L_1 = sqrt(2*n_1*q*V_0/m)/(2*f); // Length of the first tube, m
+n_n = 128; // For last tube
+L_n = 1/(2*f)*sqrt(2*n_n*q*V_0/m); // Length of the last tube,m
+printf("\n Length of the first tube = %4.2f m \n Length of the last tube = %4.2f m ", L_1,L_n);
+// Result
+// Length of the first tube = 0.03 m
+// Length of the last tube = 0.34 m \ No newline at end of file
diff --git a/767/CH6/EX6.5.3/Ch06Exa6_5_3.sci b/767/CH6/EX6.5.3/Ch06Exa6_5_3.sci
new file mode 100755
index 000000000..79ea91904
--- /dev/null
+++ b/767/CH6/EX6.5.3/Ch06Exa6_5_3.sci
@@ -0,0 +1,7 @@
+// Scilab code Exa6.5.3 : To calculate the velocity of the electrons using relativistic considerations . Page 269 (2011)
+K_E = 1.17; // Kinetic energy of the electron, MeV
+E_r = 0.511; // Rest mass energy of the electron, MeV
+v = [1-1/(K_E/E_r+1)^2]; // Velocity of the electron, m/s
+printf("\nVelocity of the electron : %4.2fc", v)
+// Result
+// Velocity of the electron : 0.91c \ No newline at end of file
diff --git a/767/CH6/EX6.7.1/Ch06Exa6_7_1.sci b/767/CH6/EX6.7.1/Ch06Exa6_7_1.sci
new file mode 100755
index 000000000..0e3768859
--- /dev/null
+++ b/767/CH6/EX6.7.1/Ch06Exa6_7_1.sci
@@ -0,0 +1,15 @@
+// Scilab code Exa6.7.1 : To calculate the maximum energy, oscillator frequency and number of revolutions of proton accelerated in a cyclotron. Page 270(2011)
+V = 20e+03; // Potential difference across the dees, V
+r = 0.28; // Radius of the dees, m
+B = 1.1; // Magnetic field, tesla
+q = 1.6e-019; // Charge of the proton, C
+m = 1.67e-027; // Mass of the proton, Kg
+E_max = B^2*q^2*r^2/(2*m*1.6e-013); // Maximnum energy acquired by protons,MeV
+f = B*q/(2*%pi*m*10^06); // Frequecy of the oscillator,MHz
+N = E_max*1.6e-013/(q*V); // Number of revolutions,
+disp(N)
+printf("\n Maximum energy acquired by proton = %4.2f MeV \n Frequency of the oscillator = %4.2f MHz \n Number of revolutions = %d revolutions ", E_max,f,N)
+// Result
+// Maximum energy acquired by proton = 4.54 MeV
+// Frequency of the oscillator = 16.77 MHz
+// Number of revolutions = 227 revolutions \ No newline at end of file
diff --git a/767/CH6/EX6.7.2/Ch06Exa6_7_2.sci b/767/CH6/EX6.7.2/Ch06Exa6_7_2.sci
new file mode 100755
index 000000000..6390ea057
--- /dev/null
+++ b/767/CH6/EX6.7.2/Ch06Exa6_7_2.sci
@@ -0,0 +1,8 @@
+// Scilab code Exa6.7.2 : To calculate the frequency of deutron accelerated in a cyclotron. Page 271(2011)
+B= 2.475; // Magnetic field, tesla
+q = 1.6e-019; // Charge of the deutron, C
+m = 2*1.67e-027; // Mass of the deutron, Kg
+f = B*q/(2*%pi*m*10^06); // Frequency of the deutron,MHz
+printf("\nFrequency of the deutron: %4.2f MHz ", f)
+// Result
+// Frequency of the deutron: 18.87 MHz \ No newline at end of file
diff --git a/767/CH6/EX6.7.3/Ch06Exa6_7_3.sci b/767/CH6/EX6.7.3/Ch06Exa6_7_3.sci
new file mode 100755
index 000000000..d35c9a484
--- /dev/null
+++ b/767/CH6/EX6.7.3/Ch06Exa6_7_3.sci
@@ -0,0 +1,9 @@
+// Scilab code Exa6.7.3 : To calculate the magnetic field applied to cyclotron whose frequency is given. Page 271(2011)
+q = 1.6e-019; // Charge of the proton, C
+r = 0.60; // radius of the dees, m
+m = 1.67e-027; // Mass of the proton, Kg
+f = 10^6; // Frequecy of the proton,Hz
+B = 2*%pi*m*f/q; // Magnetic field applied to cyclotron, tesla
+printf("\nMagnetic field applied to cyclotron : %6.4f tesla ", B)
+// Result
+// Magnetic field applied to cyclotron : 0.0656 tesla \ No newline at end of file
diff --git a/767/CH6/EX6.7.4/Ch06Exa6_7_4.sci b/767/CH6/EX6.7.4/Ch06Exa6_7_4.sci
new file mode 100755
index 000000000..bc35deb9a
--- /dev/null
+++ b/767/CH6/EX6.7.4/Ch06Exa6_7_4.sci
@@ -0,0 +1,8 @@
+// Scilab code Exa6.7.4 : To calculate the frequency of alternating field applied to dees. Page 272(2011)
+q = 1.6e-019; // Charge of the proton, C
+m = 1.67e-027; // Mass of the proton, Kg
+B = 1.4; // Magnetic field , tesla
+f = B*q/(2*%pi*m*10^06); // Frequency of the applied field, tesla
+printf("\n Frequency of the applied field : %4.2f MHz", f)
+// Result
+// Frequency of the applied field : 21.35 MHz \ No newline at end of file
diff --git a/767/CH6/EX6.8.1/Ch06Exa6_8_1.sci b/767/CH6/EX6.8.1/Ch06Exa6_8_1.sci
new file mode 100755
index 000000000..b5a359f01
--- /dev/null
+++ b/767/CH6/EX6.8.1/Ch06Exa6_8_1.sci
@@ -0,0 +1,10 @@
+// Scilab code Exa6.8.1. : To calculate the energy gained per turn of an electron present in given magnetic field. Page 273(2011)
+e = 1.6e-019 ; // Charge of an electron, C
+f = 60; // Frequency of variation magnetic field, Hz
+B_0 = 1; // Magnetic field , tesla
+r_0 = 1; // Radius of doughnut, m
+E = 4*e*2*%pi*f*r_0^2/(1.6e-019); // Energy gained by electron per turn, eV
+E_g = round(E)
+printf("\n Energy gained by electron per turn: %d eV", E_g)
+// Result
+// Energy gained by electron per turn: 1508 eV \ No newline at end of file
diff --git a/767/CH6/EX6.9.1/Ch06Exa6_9_1.sci b/767/CH6/EX6.9.1/Ch06Exa6_9_1.sci
new file mode 100755
index 000000000..e100effe6
--- /dev/null
+++ b/767/CH6/EX6.9.1/Ch06Exa6_9_1.sci
@@ -0,0 +1,7 @@
+// Scilab code Exa6.9.1 : To determine the ratio of highest to the lowest frequency of cyclotron accelerating protons whose energy is given. Page 273(2011)
+K = 500; // Kinetic energy of the proton, MeV
+E_r = 938; // Rest mass energy of the proton, MeV
+R_f = E_r/(K+E_r); // The ratio of highest to the lowest frequency,
+printf("\nThe ratio of highest to the lowest frequency : %4.2f ", R_f)
+// Result
+// The ratio of highest to the lowest frequency : 0.65 \ No newline at end of file
diff --git a/767/CH6/EX6.9.2/Ch06Exa6_9_2.sci b/767/CH6/EX6.9.2/Ch06Exa6_9_2.sci
new file mode 100755
index 000000000..4f9b54331
--- /dev/null
+++ b/767/CH6/EX6.9.2/Ch06Exa6_9_2.sci
@@ -0,0 +1,10 @@
+// Scilab code Exa6.9.2 : To calculate the w/B ratio for a completely stripped nitrogen to move in a stable orbit : Page 274(2011)
+E_k = 1200; // Kinetic energy of the proton, MeV
+q = 7; // Number of proton in nitrogen
+E_r = 13040 // Rest mass energy of the electron, MeV
+E = (E_k+E_r)*1.6e-013; // Total energy,j
+c = 3e+08; // Velocity of light, m/s
+R_w_B = q*1.6e-019*c^2/E; // Ratio of w/B, m^2/W
+printf("\nThe ratio of w/B : %4.2e m^2/W ", R_w_B)
+// Result
+// The ratio of w/B : 4.42e+007 m^2/W \ No newline at end of file