diff options
Diffstat (limited to '632')
-rwxr-xr-x | 632/CH11/EX11.20/example11_20.sce | 11 | ||||
-rwxr-xr-x | 632/CH11/EX11.3/example11_3.sce | 25 | ||||
-rwxr-xr-x | 632/CH11/EX11.38/example11_38.sce | 75 | ||||
-rwxr-xr-x | 632/CH5/EX5.2/example5_2.sce | 13 | ||||
-rwxr-xr-x | 632/CH6/EX6.4/example6_4.sce | 24 | ||||
-rwxr-xr-x | 632/CH7/EX7.14/example7_14.sce | 30 |
6 files changed, 91 insertions, 87 deletions
diff --git a/632/CH11/EX11.20/example11_20.sce b/632/CH11/EX11.20/example11_20.sce index 8eff4b35e..6a92a5400 100755 --- a/632/CH11/EX11.20/example11_20.sce +++ b/632/CH11/EX11.20/example11_20.sce @@ -1,6 +1,7 @@ -//clc()
-T = 273.15 - 30;//K
-//lnPs = 14.2410 - 2137.72 / (T-26.72)
-//dlnPs/dT = Hv / RT2
-Hv = 2137.72 * R * T^2 / ( T - 26.72 )^2;
+clc +T = 273.15 - 30;//K +R = 8.314; +//lnPs = 14.2410 - 2137.72 / (T-26.72) +//dlnPs/dT = Hv / RT2 +Hv = 2137.72 * R * T^2 / ( T - 26.72 )^2; disp("kJ/kmol",Hv,"Heat of vaporization = ")
\ No newline at end of file diff --git a/632/CH11/EX11.3/example11_3.sce b/632/CH11/EX11.3/example11_3.sce index 76fcb6dbb..1f3507a1d 100755 --- a/632/CH11/EX11.3/example11_3.sce +++ b/632/CH11/EX11.3/example11_3.sce @@ -1,13 +1,14 @@ -//clc()
-d = 100 /1000;//m
-m = 50;//kg
-P = 1.01325*10^5;//Pa
-A = %pi * (d^2)/4;
-Fatm = P * A;
-Fwt = m * g;
-Ftotal = Fatm + Fwt;
-P = Ftotal / A;
-disp("bar",P/10^5,"(a)Pressure of the gas = ")
-z = 500/1000;//m
-w = Ftotal * z;
+clc +d = 100 /1000;//m +g = 9.81; +m = 50;//kg +P = 1.01325*10^5;//Pa +A = %pi * (d^2)/4; +Fatm = P * A; +Fwt = m * g; +Ftotal = Fatm + Fwt; +P = Ftotal / A; +disp("bar",P/10^5,"(a)Pressure of the gas = ") +z = 500/1000;//m +w = Ftotal * z; disp("J",w,"(b)Work done by the gas = ")
\ No newline at end of file diff --git a/632/CH11/EX11.38/example11_38.sce b/632/CH11/EX11.38/example11_38.sce index 63a9d790c..007079f7c 100755 --- a/632/CH11/EX11.38/example11_38.sce +++ b/632/CH11/EX11.38/example11_38.sce @@ -1,37 +1,38 @@ -//clc()
-m = 1000;//kg/h (dried product)
-// S be the amount of dry solid in the product stream
-Pmoisture1 = 4;//%
-Pmoisture2 = 0.2;//%
-S = m *(1 - P/1000);
-X1 = Pmoisture1/(100 - Pmoisture1);
-X2 = Pmoisture2/(100 - Pmoisture2);
-//let G be the weight of dry air in the air stream
-Y1 = 0.01;//kg water/kg dry solid
-Cp = 1.507;
-Cw = 4.2;
-T1 = 298;//K
-T = 273;//K
-T2 = 333;//K
-Tg1 = 363;//K
-Tg2 = 305;//K
-Hs1 = (Cp + X1 * Cw) * (T1 - T);
-Hs2 = (Cp + X2 * Cw) * (T2 - T);
-//Hg = Cs(Tg - To) + Y*L
-//Cs = 1.005 + 1.884*Y
-L = 2502.3;//kJ/kg dry air
-Hg1 = (1.005 + 1.884 * Y1)*(Tg1 - T) + Y1 * L;
-Q = -40000;//kJ/h
-//Calculating for T2, Hg2 = 32.16 + 2562.59*Y
-//change in enthalpy = Q
-//H1 = S * Hs1 + G * HG1 = 37814.22 + 117.17G
-//H2 = 100728.14 + G* (32.16 + 2561.59*Y)
-//change in enthalpy = Q
-//62913.92 + G *(-85.01 + 2561.59*Y) + 40000 = 0
-//102913.92 + G *(-85.01 + 2561.59*Y) = 0 (1)
-//moisture balance, S*X1 + G*Y1 = S*X2 + G*Y2
-//G*(Y-0.01) = 39.62 (2)
-//solving simultaneously ( 1 ) and ( 2 ),
-Gdry = 3443;//kg/h
-G = Gdry*(1 + Y1);
-disp("kg/h",G,"Air requirement = ")
+//clc() +m = 1000;//kg/h (dried product) +// S be the amount of dry solid in the product stream +Pmoisture1 = 4;//% +Pmoisture2 = 0.2;//% +P = 1; +S = m *(1 - P/1000); +X1 = Pmoisture1/(100 - Pmoisture1); +X2 = Pmoisture2/(100 - Pmoisture2); +//let G be the weight of dry air in the air stream +Y1 = 0.01;//kg water/kg dry solid +Cp = 1.507; +Cw = 4.2; +T1 = 298;//K +T = 273;//K +T2 = 333;//K +Tg1 = 363;//K +Tg2 = 305;//K +Hs1 = (Cp + X1 * Cw) * (T1 - T); +Hs2 = (Cp + X2 * Cw) * (T2 - T); +//Hg = Cs(Tg - To) + Y*L +//Cs = 1.005 + 1.884*Y +L = 2502.3;//kJ/kg dry air +Hg1 = (1.005 + 1.884 * Y1)*(Tg1 - T) + Y1 * L; +Q = -40000;//kJ/h +//Calculating for T2, Hg2 = 32.16 + 2562.59*Y +//change in enthalpy = Q +//H1 = S * Hs1 + G * HG1 = 37814.22 + 117.17G +//H2 = 100728.14 + G* (32.16 + 2561.59*Y) +//change in enthalpy = Q +//62913.92 + G *(-85.01 + 2561.59*Y) + 40000 = 0 +//102913.92 + G *(-85.01 + 2561.59*Y) = 0 (1) +//moisture balance, S*X1 + G*Y1 = S*X2 + G*Y2 +//G*(Y-0.01) = 39.62 (2) +//solving simultaneously ( 1 ) and ( 2 ), +Gdry = 3443;//kg/h +G = Gdry*(1 + Y1); +disp("kg/h",G,"Air requirement = ")
\ No newline at end of file diff --git a/632/CH5/EX5.2/example5_2.sce b/632/CH5/EX5.2/example5_2.sce index e630e0e70..79229ae68 100755 --- a/632/CH5/EX5.2/example5_2.sce +++ b/632/CH5/EX5.2/example5_2.sce @@ -1,6 +1,7 @@ -//clc()
-P = 10^7;//Pa;
-T = 500;//K
-R = 8.314;//Pa * L / mol K
-V = N * R * T / ( P * 1000);
-disp("m^3",V,"(a)Volume of CO2 calculated using ideal gas equation = ")
+//clc() +P = 10^7;//Pa; +N = 1000; +T = 500;//K +R = 8.314;//Pa * L / mol K +V = N * R * T / ( P * 1000); +disp("m^3",V,"(a)Volume of CO2 calculated using ideal gas equation = ")
\ No newline at end of file diff --git a/632/CH6/EX6.4/example6_4.sce b/632/CH6/EX6.4/example6_4.sce index 3409c63d8..4bfae3561 100755 --- a/632/CH6/EX6.4/example6_4.sce +++ b/632/CH6/EX6.4/example6_4.sce @@ -1,13 +1,13 @@ -//clc()
-A = 13.8587;
-B = 2911.32;
-C = 56.56;
-T1 = 325;//K
-//Pressure at normal condition = 101.3kPa
-P2 = 101.3;//kPa
-//Antoine equation - lnP = A - B / (T - C)
-lnP = A - (B / (T - C));
-P1 = exp(lnP);
-disp("kPa",P1,"(a)Vapour pressure of n-heptane at 325K = ")
-T2 = B/(A - log(P2)) + C;
+//clc() +A = 13.8587; +B = 2911.32; +C = 56.56; +T1 = 325;//K +//Pressure at normal condition = 101.3kPa +P2 = 101.3;//kPa +//Antoine equation - lnP = A - B / (T - C) +lnP = A - (B / (T1 - C)); +P1 = exp(lnP); +disp("kPa",P1,"(a)Vapour pressure of n-heptane at 325K = ") +T2 = B/(A - log(P2)) + C; disp("K",T2,"(b)Normal boiling point of n-heptane = ")
\ No newline at end of file diff --git a/632/CH7/EX7.14/example7_14.sce b/632/CH7/EX7.14/example7_14.sce index e1d9b82ca..d2aab7667 100755 --- a/632/CH7/EX7.14/example7_14.sce +++ b/632/CH7/EX7.14/example7_14.sce @@ -1,15 +1,15 @@ -//clc()
-//the three phase temperature is first find out, which comes to be 342K, the corresponding Ps1 = 71.18, Ps2 = 30.12
-T = [342 343 348 353 363 373];
-Ps2 = [30.12 31.06 37.99 47.32 70.11 101.3];
-Ps1 = [71.18 72.91 85.31 100.5 135.42 179.14];
-P = 101.3;//kPa
-for i = 1:4
- y1(i) = 1 - (Ps1(i))/P;
-end
-for i = 1:6
- y2(i) = 1 - (Ps2(i))/P;
-end
-plot2d(y2,T);
-plot2d(1-y1,T,rect = [0,320,1,380]);
-xtitle('Temperature - compositon diagram','x, y (mole fraction of benzene)','Temperature')
+//clc() +//the three phase temperature is first find out, which comes to be 342K, the corresponding Ps1 = 71.18, Ps2 = 30.12 +T = [342 343 348 353 363 373]; +Ps2 = [30.12 31.06 37.99 47.32 70.11 101.3]; +Ps1 = [71.18 72.91 85.31 100.5 135.42 179.14]; +P = 101.3;//kPa +for i = 1:6 + y1(i) = 1 - (Ps1(i))/P; +end +for i = 1:6 + y2(i) = 1 - (Ps2(i))/P; +end +plot2d(y2,T); +plot2d(1-y1,T,rect = [0,320,1,380]); +xtitle('Temperature - compositon diagram','x, y (mole fraction of benzene)','Temperature')
\ No newline at end of file |