diff options
Diffstat (limited to '587/CH7/EX7.2')
-rwxr-xr-x | 587/CH7/EX7.2/example7_2.sce | 79 |
1 files changed, 35 insertions, 44 deletions
diff --git a/587/CH7/EX7.2/example7_2.sce b/587/CH7/EX7.2/example7_2.sce index 780a50018..3e80d6250 100755 --- a/587/CH7/EX7.2/example7_2.sce +++ b/587/CH7/EX7.2/example7_2.sce @@ -1,44 +1,35 @@ -clear;
-clc;
-
-//Example7.2[Cooling of a Hot Block by Forced Air at High Elevation]
-//Given:-
-ReC=5*10^5;//critical Reynolds number
-v=8;//Velocity of air[m/s]
-T_air=20;//Initial Temperature of air[degree Celcius]
-T_plate=140;//Temperature of flat plate[degree Celcius]
-T_film=(T_air+T_plate)/2;//Film Temperature of air[degree Celcius]
-//Properties of air at film temperature[degree Celcius]
-k=0.02953;//[W/m.degree Celcius]
-Pr=0.7154;//Prandtl Number
-nu=2.097*10^(-5);//Kinematic Viscosity at 1 atm Pressure [m^2/s]
-nu_ac=nu/0.823;//Kinematic viscosity at pressure 0.823 atm[m^2/s]
-//Solution(a)
-L1=6;//Characteristic length of plate along the flow of air[m]
-w1=1.5;//width[m]
-ReL1=(v*L1)/nu_ac;//Reynolds number
-if(ReL1>ReC) then,
- disp("Flow is not laminar")
- //We have average Nusselt Number
- Nu1=((0.037*(ReL1^(0.8)))-871)*(Pr^(1/3));
- disp(ceil(Nu1),"Nusselt Number is")
- h1=k*Nu1/L1;//[W/m^2.degree Celcius]
- As1=w1*L1;//Flow Area of plate[m^2]
- Q1=h1*As1*(T_plate-T_air);
- disp("W",Q1,"Heat Flow Rate is")
-else,
- disp("Flow is laminar")
-end
-//Solution(b)
-L2=1.5;//Characteristic length of plate along flow of air[m]
-ReL2=v*L2/nu_ac;//Reynolds Number
-if(ReL2<Rec) then,
- disp("Flow is laminar")
- Nu2=0.664*(ReL2^(0.5))*(Pr^(1/3));
- disp(ceil(Nu2),"Nusselt Number is")
- h2=k*Nu2/L2;//[W/m^2.degree Celcius]
- Q2=h2*As1*(T_plate-T_air);
- disp("W",ceil(Q2),"The heat transfer rate is")
-else,
- disp("Flow is turbulent")
-end
+clear; +clc; + +//Example7.2[Cooling of a Hot Block by Forced Air at High Elevation] +//Given:- +ReC=5*10^5;//critical Reynolds number +v=8;//Velocity of air[m/s] +T_air=20;//Initial Temperature of air[degree Celcius] +T_plate=140;//Temperature of flat plate[degree Celcius] +T_film=(T_air+T_plate)/2;//Film Temperature of air[degree Celcius] +//Properties of air at film temperature[degree Celcius] +k=0.02953;//[W/m.degree Celcius] +Pr=0.7154;//Prandtl Number +nu=2.097*10^(-5);//Kinematic Viscosity at 1 atm Pressure [m^2/s] +nu_ac=nu/0.823;//Kinematic viscosity at pressure 0.823 atm[m^2/s] +//Solution(a) +L1=6;//Characteristic length of plate along the flow of air[m] +w1=1.5;//width[m] +ReL1=(v*L1)/nu_ac;//Reynolds number +if(ReL1>ReC) then, + disp("Flow is not laminar") + //We have average Nusselt Number + Nu1=((0.037*(ReL1^(0.8)))-871)*(Pr^(1/3)); + disp(ceil(Nu1),"Nusselt Number is") + h1=k*Nu1/L1;//[W/m^2.degree Celcius] + As1=w1*L1;//Flow Area of plate[m^2] + Q1=h1*As1*(T_plate-T_air); + disp("W",Q1,"Heat Flow Rate is") +else, + disp("Flow is laminar") +end +//Solution(b) +L2=1.5;//Characteristic length of plate along flow of air[m] +ReL2=v*L2/nu_ac;//Reynolds Number +if(ReL2<ReC) then,="" disp("flow="" is="" laminar")="" nu2="0.664*(ReL2^(0.5))*(Pr^(1/3));" disp(ceil(nu2),"nusselt="" number="" is")="" h2="k*Nu2/L2;//[W/m^2.degree" celcius]="" q2="h2*As1*(T_plate-T_air);" disp("w",ceil(q2),"the="" heat="" transfer="" rate="" else,="" turbulent")="" end="" <="" div=""></rec)>
\ No newline at end of file |