summaryrefslogtreecommitdiff
path: root/3875/CH1
diff options
context:
space:
mode:
Diffstat (limited to '3875/CH1')
-rw-r--r--3875/CH1/EX1.1/1_1.txt2
-rw-r--r--3875/CH1/EX1.1/Ex1_1.sce13
-rw-r--r--3875/CH1/EX1.2/Ex1_2.sce32
-rw-r--r--3875/CH1/EX1.3/1_3.txt2
-rw-r--r--3875/CH1/EX1.3/Ex1_3.sce21
-rw-r--r--3875/CH1/EX1.4/1_4.txt1
-rw-r--r--3875/CH1/EX1.4/Ex1_4.sce16
-rw-r--r--3875/CH1/EX1.5/1_5.txt2
-rw-r--r--3875/CH1/EX1.5/Ex1_5.sce17
-rw-r--r--3875/CH1/EX1.6/1_6.txt4
-rw-r--r--3875/CH1/EX1.6/Ex1_6.sce21
-rw-r--r--3875/CH1/EX1.7/1_7.txt5
-rw-r--r--3875/CH1/EX1.7/Ex1_7.sce26
-rw-r--r--3875/CH1/EX1.8/1_8.txt1
-rw-r--r--3875/CH1/EX1.8/Ex1_8.sce12
-rw-r--r--3875/CH1/EX1.9/1_9.txt3
-rw-r--r--3875/CH1/EX1.9/Ex1_9.sce22
17 files changed, 200 insertions, 0 deletions
diff --git a/3875/CH1/EX1.1/1_1.txt b/3875/CH1/EX1.1/1_1.txt
new file mode 100644
index 000000000..6d1ee2ec9
--- /dev/null
+++ b/3875/CH1/EX1.1/1_1.txt
@@ -0,0 +1,2 @@
+Resistive force = 2.31e-03 newton/s/meter
+Relaxation time = 86.56 s \ No newline at end of file
diff --git a/3875/CH1/EX1.1/Ex1_1.sce b/3875/CH1/EX1.1/Ex1_1.sce
new file mode 100644
index 000000000..c20e0ced8
--- /dev/null
+++ b/3875/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,13 @@
+clc ;
+clear ;
+m=100*10^-3 //flat disc mass in kg
+t=60 //time period of oscillation in sec
+omega=10 //frequency in Hz
+
+//Calculation
+damp_omega=log(2)/60 //amplitude of damped oscillator for A/C = 1/2 in rad/s
+c= 2*m*damp_omega
+tau= 1/damp_omega
+
+mprintf("Resistive force = %0.2e newton/s/meter \n",c)
+mprintf("Relaxation time = %2.2f s",tau) //The answer provided in the textbook is wrong.
diff --git a/3875/CH1/EX1.2/Ex1_2.sce b/3875/CH1/EX1.2/Ex1_2.sce
new file mode 100644
index 000000000..44e020473
--- /dev/null
+++ b/3875/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,32 @@
+clc ;
+clear ;
+K=10 //Spring constant in N/m
+m=0.1 //Mass in kg
+
+//calculation
+// for (a)
+damp_omega=-1/-100
+c=m*2*damp_omega
+
+//for (b)
+omega_n=sqrt(K/m)
+
+//for (c)
+damping_ratio=damp_omega/omega_n
+Q=1/(2*damping_ratio)
+omega_d=omega_n*sqrt(1-damping_ratio^2) //in radian/s
+
+//for (d)
+fract_change=0.5*(damping_ratio^2) //fractional change in frequency
+percent_change=fract_change*(10^2)
+
+mprintf("\n(a)\n")
+mprintf("Resistive force constant c = %.0e newton/s/meter\n",c)
+mprintf("(b)\n")
+mprintf("Natural angular frequency omega_n = %d rad/s\n",omega_n)
+mprintf("(c)\n")
+mprintf("Damping ratio damping_ratio = %.0e\n",damping_ratio)
+mprintf("Q factor = %d\n",Q)
+mprintf("(d)\n")
+mprintf("percent change in frequency = %.0e\n",percent_change)
+
diff --git a/3875/CH1/EX1.3/1_3.txt b/3875/CH1/EX1.3/1_3.txt
new file mode 100644
index 000000000..c564134cb
--- /dev/null
+++ b/3875/CH1/EX1.3/1_3.txt
@@ -0,0 +1,2 @@
+Amplitude of oscillation = 1.26e-02 m
+Phase relative to the applied force is = 161.6 degree \ No newline at end of file
diff --git a/3875/CH1/EX1.3/Ex1_3.sce b/3875/CH1/EX1.3/Ex1_3.sce
new file mode 100644
index 000000000..55cb9d52e
--- /dev/null
+++ b/3875/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,21 @@
+clc ;
+clear ;
+m=0.1 // mass in kg
+K=100 //spring constant in N/m
+c=1 //resistive force in Nsm^-1
+F0=2 //force in N
+omega=50 //frequency in rad/s
+
+//calculation
+
+omega_n=sqrt(K/m) //in rad/s
+r=omega/omega_n
+delta_st=F0/K //in m
+damp_ratio=c/(2*m*omega_n)
+A=delta_st/(sqrt((1-r^2)^2+(2*r*damp_ratio)^2))
+tan_phi=(2*r*damp_ratio)/(1-r^2) //in degree
+phi=180+atand(tan_phi) //converting degree to postive form
+
+mprintf("Amplitude of oscillation = %1.2e m\n",A)
+mprintf("Phase relative to the applied force is = %1.1f degree",phi)
+//The answers vary due to round of errors
diff --git a/3875/CH1/EX1.4/1_4.txt b/3875/CH1/EX1.4/1_4.txt
new file mode 100644
index 000000000..58afc28c5
--- /dev/null
+++ b/3875/CH1/EX1.4/1_4.txt
@@ -0,0 +1 @@
+ The current leads the applied voltage by = 60.64 degree \ No newline at end of file
diff --git a/3875/CH1/EX1.4/Ex1_4.sce b/3875/CH1/EX1.4/Ex1_4.sce
new file mode 100644
index 000000000..d56989993
--- /dev/null
+++ b/3875/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,16 @@
+clc;
+clear;
+omega=500 //frequency in radian/s
+L=0.08 //inductance in H
+R=15 //resistance in ohm
+C=30*10^-6 //capacity in F
+
+//calculation
+
+L_omega=L*omega //in ohm
+C_omega=1/(C*omega) //in ohm
+tan_phi=(L_omega-C_omega)/R //in degrees
+phi=atand(tan_phi)
+
+mprintf("The current leads the applied voltage by = %2.2f degree",-phi)
+//The answers vary due to round off error
diff --git a/3875/CH1/EX1.5/1_5.txt b/3875/CH1/EX1.5/1_5.txt
new file mode 100644
index 000000000..7f12ea8f5
--- /dev/null
+++ b/3875/CH1/EX1.5/1_5.txt
@@ -0,0 +1,2 @@
+ Resistance is = 19 ohm
+Capacitance is = 3.33e-05 F
diff --git a/3875/CH1/EX1.5/Ex1_5.sce b/3875/CH1/EX1.5/Ex1_5.sce
new file mode 100644
index 000000000..95bf614ca
--- /dev/null
+++ b/3875/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,17 @@
+clc;
+clear;
+phi=45 //since the EMF is ahead of the current by 55-10 in degree
+omega=3000 //frequency in radian/s
+L=0.01 //inductance in H
+E0=141.4
+I0=5
+
+//calculation
+Z1=sqrt(2) //*R first equation for Z
+Z2=E0/I0//second equation for Z
+R=Z2/Z1 //resistance in ohm
+L_omega=L*omega //in ohm
+C=1/((L_omega-R)*omega)
+
+mprintf("Resistance is = %d ohm\n",R) //The answers vary due to round off error
+mprintf("Capacitance is = %2.2e F\n",C)
diff --git a/3875/CH1/EX1.6/1_6.txt b/3875/CH1/EX1.6/1_6.txt
new file mode 100644
index 000000000..5b6c5ef75
--- /dev/null
+++ b/3875/CH1/EX1.6/1_6.txt
@@ -0,0 +1,4 @@
+(i)Impedance = 94.5 ohm
+(ii)Current = 2.43 A
+(iii)Power Factor = 0.53 (Lead)
+(iv)Power Consumed = 296 W \ No newline at end of file
diff --git a/3875/CH1/EX1.6/Ex1_6.sce b/3875/CH1/EX1.6/Ex1_6.sce
new file mode 100644
index 000000000..f22eb0161
--- /dev/null
+++ b/3875/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,21 @@
+clc;
+clear;
+R=50 //resistance in ohm
+C=25 //capacitance in micro-F
+L=0.15 //inductance in H
+V=230 //voltage in Volts
+f=50 //frequency in Hz
+
+//calculation
+XL=2*%pi*f*L //in ohm
+XC=(10^6)/(2*%pi*f*C) //in ohm
+X=XL-XC //in ohm
+Z=sqrt(R^2+X^2)
+I=V/Z
+pf=R/Z
+power_consumed=V*I*pf
+
+mprintf("(i)Impedance = %2.1f ohm\n",Z) //The answers vary due to round off error
+mprintf("(ii)Current = %1.2f A\n",I) //The answers vary due to round off error
+mprintf("(iii)Power Factor = %1.2f (Lead)\n",pf)
+mprintf("(iv)Power Consumed = %d W",power_consumed) //The answers vary due to round off error
diff --git a/3875/CH1/EX1.7/1_7.txt b/3875/CH1/EX1.7/1_7.txt
new file mode 100644
index 000000000..f4d6f09b8
--- /dev/null
+++ b/3875/CH1/EX1.7/1_7.txt
@@ -0,0 +1,5 @@
+(i)Impedance = 12.4 ohm
+(ii)Current = 19.41 A
+(iii)Power Factor = 0.65 (Lead)
+(iv)Power Consumed = 3015 W
+(v)The value of capacitance is = 0.000169 F or 169 micro-F
diff --git a/3875/CH1/EX1.7/Ex1_7.sce b/3875/CH1/EX1.7/Ex1_7.sce
new file mode 100644
index 000000000..a567e7324
--- /dev/null
+++ b/3875/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,26 @@
+clc;
+clear;
+R=8 //resistance in ohm
+L=0.03 //inductance in H
+V=240 //voltage in Volts
+f=50 //frequency in Hz
+reactance_RLC=9.42 //reactance of total RLC circuit in ohm in case(2)
+
+//calculation
+//for (1)
+X_L=2*%pi*f*L // inductive reactance in ohm
+Z=sqrt(R^2+X_L^2) //in ohm
+I=V/Z
+P=I^2*R
+pf=R/Z
+
+//for (2)
+reactance_C=2*reactance_RLC //capacitive reactance in ohm
+omega=2*%pi*f
+C=1/(omega*reactance_C)
+
+mprintf("(i)Impedance = %2.1f ohm\n",Z) //The answer varies due to round off error
+mprintf("(ii)Current = %1.2f A\n",I) //The answers varies due to round off error
+mprintf("(iii)Power Factor = %1.2f (Lead)\n",pf)
+mprintf("(iv)Power Consumed = %d W\n",P) //The provided in the textbook is wrong.
+mprintf("(v)The value of capacitance is = %f F or 169 micro-F\n",C)
diff --git a/3875/CH1/EX1.8/1_8.txt b/3875/CH1/EX1.8/1_8.txt
new file mode 100644
index 000000000..063c0809a
--- /dev/null
+++ b/3875/CH1/EX1.8/1_8.txt
@@ -0,0 +1 @@
+ The frequency of resonance = 155.939360 Hz \ No newline at end of file
diff --git a/3875/CH1/EX1.8/Ex1_8.sce b/3875/CH1/EX1.8/Ex1_8.sce
new file mode 100644
index 000000000..d71f1aa27
--- /dev/null
+++ b/3875/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,12 @@
+clc;
+clear;
+C= 4*10^-6 // capacitance in F
+L=0.25 // inductance in H
+R=50 //resistance in ohm
+
+//calculation
+
+F0=1/(2*%pi)*sqrt(1/(L*C)-(R^2/L^2))
+
+mprintf("The frequency of resonance = %f Hz",F0)
+//The answer varies due to round off error
diff --git a/3875/CH1/EX1.9/1_9.txt b/3875/CH1/EX1.9/1_9.txt
new file mode 100644
index 000000000..8c60f25c0
--- /dev/null
+++ b/3875/CH1/EX1.9/1_9.txt
@@ -0,0 +1,3 @@
+(a) The capacitance of the circuit is 8e-06 F
+
+(b) The value of current is = 0.3 A \ No newline at end of file
diff --git a/3875/CH1/EX1.9/Ex1_9.sce b/3875/CH1/EX1.9/Ex1_9.sce
new file mode 100644
index 000000000..7ac8c7fff
--- /dev/null
+++ b/3875/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,22 @@
+clc;
+clear;
+R=30 // resistance in ohm
+L= 20*10^-3 //inductance in H
+f=1000/%pi //frequency in Hz
+V=25 //in volt
+
+//calculation
+// for (a)
+inductance_l=2*%pi*f*L //in ohm
+Z=sqrt(R^2+inductance_l^2) //in ohm
+C=L/Z^2
+
+mprintf("\n(a) The capacitance of the circuit is %0.0e F\n",C)
+
+//for(b)
+
+dynamic_imp=L/(C*R) //in ohm
+I_min=V/dynamic_imp
+
+mprintf("\n(b) The value of current is = %0.1f A",I_min)
+