summaryrefslogtreecommitdiff
path: root/3872/CH2
diff options
context:
space:
mode:
Diffstat (limited to '3872/CH2')
-rw-r--r--3872/CH2/EX2.1/EX2_1.sce47
-rw-r--r--3872/CH2/EX2.1/EX2_1_1.jpgbin0 -> 70847 bytes
-rw-r--r--3872/CH2/EX2.1/EX2_1_2.jpgbin0 -> 20781 bytes
-rw-r--r--3872/CH2/EX2.2/EX2_2.jpgbin0 -> 16961 bytes
-rw-r--r--3872/CH2/EX2.2/EX2_2.sce26
-rw-r--r--3872/CH2/EX2.3/EX2_3.jpgbin0 -> 10892 bytes
-rw-r--r--3872/CH2/EX2.3/EX2_3.sce19
-rw-r--r--3872/CH2/EX2.4/EX2_4.jpgbin0 -> 61659 bytes
-rw-r--r--3872/CH2/EX2.4/EX2_4.sce40
-rw-r--r--3872/CH2/EX2.5/EX2_5.jpgbin0 -> 33821 bytes
-rw-r--r--3872/CH2/EX2.5/EX2_5.sce28
11 files changed, 160 insertions, 0 deletions
diff --git a/3872/CH2/EX2.1/EX2_1.sce b/3872/CH2/EX2.1/EX2_1.sce
new file mode 100644
index 000000000..ba6cba3b4
--- /dev/null
+++ b/3872/CH2/EX2.1/EX2_1.sce
@@ -0,0 +1,47 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 2 ; Example 2.1
+//Scilab Version - 6.0.0 ; OS - Windows
+
+clc;
+clear;
+Vmax=141.4; //Peak source voltage in Volts
+R=10; //Load resistance in Ohms
+Xl=3.77; //Inductive reactance in Ohms
+Vrms=Vmax/sqrt(2); //RMS value of source voltage in Volts
+Ir=Vrms/(R); //Current through the resistor in Amperes
+Il=Vrms/(%i*Xl); //Current through the inductor in Amperes
+Iload=Ir+Il; //Current through the load in Amperes
+wt=0:0.1:2*%pi;
+v=Vmax*cos(wt); //Instantaneous voltage in Volts
+ir=Vmax*cos(wt)/R; //Instantaneous current through the resistor in Amperes
+il=Vmax*cos(wt+90*%pi/180); //Instantaneous current through the inductor in Amperes
+Pr=Vrms*Ir*(1+cos(2*wt)); //Instantaneous Power absorbed by Resistor in Watts
+Pl=Vrms*abs(Il)*sin(2*wt); //Instantaneous Power absorbed by Inductor in Watts
+del=0;
+bet=atan(imag(Iload),real(Iload));
+P=Vrms*abs(Iload)*cos(del-bet); //Real power absorbed by the load in Watts
+Q=Vrms*abs(Iload)*sin(del-bet); //Reactive power absorbed by the load in VAR
+pf=cos(del-bet); //Power factor
+clf; //To clear figures from previous programs
+subplot(231);
+plot(wt,v);
+xtitle('Input Voltage','Angular displacement','Voltage(Volts)');
+subplot(232);
+plot(wt,ir);
+xtitle('Current through resistor','Angular displacement','Current(Amp.)');
+subplot(233);
+plot(wt,Pr);
+xtitle('Power dissipated in resistor','Angular displacement','Power(Watts)');
+subplot(236);
+xtitle('Power throgh the inductor','Angular displacement','Power(VAR)');
+plot(wt,Pl);
+subplot(234);
+plot(wt,v);
+xtitle('Input Voltage','Angular displacement','Voltage(Volts)');
+subplot(235);
+plot(wt,il);
+xtitle('Current through inductor','Angular displacement','Current(Amp.)');
+printf('\nThe Real power absorbed by the load is %d Watts\n',P);
+printf('The Reactive power absorbed by the load is %d VAR\n',Q);
+printf('The Power factor is %.4f lagging',pf);
diff --git a/3872/CH2/EX2.1/EX2_1_1.jpg b/3872/CH2/EX2.1/EX2_1_1.jpg
new file mode 100644
index 000000000..67602865a
--- /dev/null
+++ b/3872/CH2/EX2.1/EX2_1_1.jpg
Binary files differ
diff --git a/3872/CH2/EX2.1/EX2_1_2.jpg b/3872/CH2/EX2.1/EX2_1_2.jpg
new file mode 100644
index 000000000..2e00f5649
--- /dev/null
+++ b/3872/CH2/EX2.1/EX2_1_2.jpg
Binary files differ
diff --git a/3872/CH2/EX2.2/EX2_2.jpg b/3872/CH2/EX2.2/EX2_2.jpg
new file mode 100644
index 000000000..e46c2ac7f
--- /dev/null
+++ b/3872/CH2/EX2.2/EX2_2.jpg
Binary files differ
diff --git a/3872/CH2/EX2.2/EX2_2.sce b/3872/CH2/EX2.2/EX2_2.sce
new file mode 100644
index 000000000..7a01ddca2
--- /dev/null
+++ b/3872/CH2/EX2.2/EX2_2.sce
@@ -0,0 +1,26 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 2 ; Example 2.2
+//Scilab Version - 6.0.0 ; OS - Windows
+
+
+clc;
+clear;
+V=100*exp(%i*130*%pi/180); //Source Voltage in Volts
+I=10*exp(%i*10*%pi/180); //Source current in Amperes
+S=V*conj(I); //Apparent power in VA
+P=real(S); //Real power in Watts
+Q=imag(S); //Reactive power in VAR
+printf('The values are P=%d Watts and Q=%d VAR. Hence,',P,Q);
+if P<0 then
+ P=-P
+ printf('\nThe source absorbs %d Watts',P);
+else
+ printf('\nThe source delivers %d Watts',P);
+end
+if Q<0 then
+ Q=-Q;
+ printf('\nThe source absorbs %d VAR',Q);
+else
+ printf('\nThe source delivers %d VAR',Q);
+end
diff --git a/3872/CH2/EX2.3/EX2_3.jpg b/3872/CH2/EX2.3/EX2_3.jpg
new file mode 100644
index 000000000..53ba2470a
--- /dev/null
+++ b/3872/CH2/EX2.3/EX2_3.jpg
Binary files differ
diff --git a/3872/CH2/EX2.3/EX2_3.sce b/3872/CH2/EX2.3/EX2_3.sce
new file mode 100644
index 000000000..335eaa38a
--- /dev/null
+++ b/3872/CH2/EX2.3/EX2_3.sce
@@ -0,0 +1,19 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 2 ; Example 2.3
+//Scilab Version - 6.0.0 ; OS - Windows
+
+
+clear;
+clc;
+P=100 //Real power in kW
+pf=0.8; //Power factor
+pfc=0.95 //Corrected power factor with capacitor
+Ol=acos(pf); //Power factor angle without capacitor
+Oc=acos(pfc); //Power factor angle with capacitor
+Ql=P*tan(Ol); //Reactive power delivered by the source without capacitor in kVAR
+Sl=P/cos(Ol); //Apparent power delivered by the source without capacitor in kVA
+Qs=P*tan(Oc); //Reactive power delivered by the source with capacitor in kVAR
+Ss=P/cos(Oc); //Apparent power delivered by the source with capacitor in kVA
+Qc=Ql-Qs; //Reactive power delivered by the capacitor in kVAR
+printf('\nThe capacitor delivers %f kVAR',Qc);
diff --git a/3872/CH2/EX2.4/EX2_4.jpg b/3872/CH2/EX2.4/EX2_4.jpg
new file mode 100644
index 000000000..7508e8160
--- /dev/null
+++ b/3872/CH2/EX2.4/EX2_4.jpg
Binary files differ
diff --git a/3872/CH2/EX2.4/EX2_4.sce b/3872/CH2/EX2.4/EX2_4.sce
new file mode 100644
index 000000000..083783b44
--- /dev/null
+++ b/3872/CH2/EX2.4/EX2_4.sce
@@ -0,0 +1,40 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 2 ; Example 2.4
+//Scilab Version - 6.0.0 ; OS - Windows
+
+
+clc;
+clear;
+Eab=480*(cos(0*%pi/180)+%i*sin(0*%pi/180)); //Line Voltage of the source in Volts
+Zdel=30*(cos(40*%pi/180)+%i*sin(40*%pi/180)); //Impedance of the delta load in Ohm
+Zlineperphase=1*(cos(85*%pi/180)+%i*sin(85*%pi/180)); //Line Impedance in Ohm
+Zstar=Zdel/3; //Impedance of delta load converted to star load in Ohm
+[r theta]=polar(Eab);
+Ebc=r*(cos(theta-120*%pi/180)+%i*sin(theta-120*%pi/180));
+Eca=r*(cos(theta+120*%pi/180)+%i*sin(theta+120*%pi/180));
+Ean=r*(cos(theta-30*%pi/180)+%i*sin(theta-30*%pi/180))/sqrt(3); //Phase voltage of the source in Volts
+[r theta]=polar(Ean);
+Ebn=r*(cos(theta-120*%pi/180)+%i*sin(theta-120*%pi/180));
+Ecn=r*(cos(theta+120*%pi/180)+%i*sin(theta+120*%pi/180));
+Ia=Ean/(Zlineperphase+Zstar); //Line current in Amperes
+Ib=Ebn/(Zlineperphase+Zstar);
+Ic=Ecn/(Zlineperphase+Zstar);
+[r theta]=polar(Ia);
+Iab=r*(cos(theta+30*%pi/180)+%i*sin(theta+30*%pi/180))/sqrt(3); //Phase current in Amperes
+[r theta]=polar(Ib);
+Ibc=r*(cos(theta+30*%pi/180)+%i*sin(theta+30*%pi/180))/sqrt(3);
+[r theta]=polar(Ic);
+Ica=r*(cos(theta+30*%pi/180)+%i*sin(theta+30*%pi/180))/sqrt(3);
+EAB=Zdel*Iab; //Line voltage across the load in Volts
+EBC=Zdel*Ibc;
+ECA=Zdel*Ica;
+printf('\nThe magnitude of line current IA is %.2f Ampere and its angle is %.2f degrees',abs(Ia),atand(imag(Ia),real(Ia)));
+printf('\nThe magnitude of line current IB is %.2f Ampere and its angle is %.2f degrees',abs(Ib),atand(imag(Ib),real(Ib)));
+printf('\nThe magnitude of line current IC is %.2f Ampere and its angle is %.2f degrees',abs(Ic),atand(imag(Ic),real(Ic)));
+printf('\nThe magnitude of load current IAB is %.2f Ampere and its angle is %.2f degrees',abs(Iab),atand(imag(Iab),real(Iab)));
+printf('\nThe magnitude of load current IBC is %.2f Ampere and its angle is %.2f degrees',abs(Ibc),atand(imag(Ibc),real(Ibc)));
+printf('\nThe magnitude of load current ICA is %.2f Ampere and its angle is %.2f degrees',abs(Ica),atand(imag(Ica),real(Ica)));
+printf('\nThe magnitude of load voltage EAB is %.2f Volts and its angle is %.2f degrees',abs(EAB),atand(imag(EAB),real(EAB)));
+printf('\nThe magnitude of load voltage EBC is %.2f Volts and its angle is %.2f degrees',abs(EBC),atand(imag(EBC),real(EBC)));
+printf('\nThe magnitude of load voltage ECA is %.2f Volts and its angle is %.2f degrees',abs(ECA),atand(imag(ECA),real(ECA)));
diff --git a/3872/CH2/EX2.5/EX2_5.jpg b/3872/CH2/EX2.5/EX2_5.jpg
new file mode 100644
index 000000000..1e6aac1de
--- /dev/null
+++ b/3872/CH2/EX2.5/EX2_5.jpg
Binary files differ
diff --git a/3872/CH2/EX2.5/EX2_5.sce b/3872/CH2/EX2.5/EX2_5.sce
new file mode 100644
index 000000000..45fcb640e
--- /dev/null
+++ b/3872/CH2/EX2.5/EX2_5.sce
@@ -0,0 +1,28 @@
+//Book - Power System: Analysis & Design 5th Edition
+//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
+//Chapter - 2 ; Example 2.5
+//Scilab Version - 6.0.0 ; OS - Windows
+
+
+clc;
+clear;
+Pim=400; //Real Power of induction motor in kW
+pfim=0.8; //Power factor of the induction motor
+Ssm=150; //Apparent power of the synchronous motor in kVA
+pfsm=0.9; //Power factor of the synchronous motor
+Vline=4160; //RMS line voltage of AC supply in Volts
+Sim=Pim/pfim; //Apparent power of the induction motor in kVA
+Qim=sqrt(Sim*Sim-Pim*Pim); //Reactive power absorbed by the induction motor in kVAR
+Psm=Ssm*pfsm; //Real power absorbed by the synchronous motor in kW
+Qsm=sqrt(Ssm*Ssm-Psm*Psm); //Reactive power delivered by the synchronous motor in kVAR
+P=Pim+Psm; //Total real power of the combined load in kW
+Q=Qim-Qsm; //Total reactive power absorbed by the combined load in kVAR
+S=sqrt(P*P+Q*Q); //Total apparent power absorbed by the combined load in kVA
+pf=P/S; //Power factor of the combined load
+Iline=S*1000/(sqrt(3)*Vline); //Line current of the combined load in Amperes
+XCdel=3*Vline*Vline/(Q*1000); //Capacitive reactance at each leg for unity power factor in Ohm
+Iupf=P*1000/(sqrt(3)*Vline); //Line current at unity poiwer factor
+printf('\nThe power factor of the combined motor load is %f',pf);
+printf('\nThe magnitude of line current delivered by the source is %f Amperes',Iline);
+printf('\nThe magnitude of capacitive reactance at each leg for unity power factor is %f Ohm',XCdel);
+printf('\nThe magnitude of the line current delivered by the source with capacitor bank installed is %f Amperes',Iupf);