summaryrefslogtreecommitdiff
path: root/3871/CH5
diff options
context:
space:
mode:
Diffstat (limited to '3871/CH5')
-rw-r--r--3871/CH5/EX5.1/Ex5_1.sce24
-rw-r--r--3871/CH5/EX5.10/Ex5_10.sce30
-rw-r--r--3871/CH5/EX5.11/Ex5_11.sce23
-rw-r--r--3871/CH5/EX5.12/Ex5_12.sce32
-rw-r--r--3871/CH5/EX5.13/Ex5_13.sce26
-rw-r--r--3871/CH5/EX5.14/Ex5_14.sce27
-rw-r--r--3871/CH5/EX5.15/Ex5_15.sce21
-rw-r--r--3871/CH5/EX5.16/Ex5_16.sce37
-rw-r--r--3871/CH5/EX5.17/Ex5_17.sce24
-rw-r--r--3871/CH5/EX5.18/Ex5_18.sce30
-rw-r--r--3871/CH5/EX5.19/Ex5_19.sce22
-rw-r--r--3871/CH5/EX5.2/Ex5_2.sce26
-rw-r--r--3871/CH5/EX5.20/Ex5_20.sce17
-rw-r--r--3871/CH5/EX5.21/Ex5_21.sce25
-rw-r--r--3871/CH5/EX5.22/Ex5_22.sce19
-rw-r--r--3871/CH5/EX5.23/Ex5_23.sce19
-rw-r--r--3871/CH5/EX5.24/Ex5_24.sce21
-rw-r--r--3871/CH5/EX5.25/Ex5_25.sce21
-rw-r--r--3871/CH5/EX5.26/Ex5_26.sce26
-rw-r--r--3871/CH5/EX5.27/Ex5_27.sce32
-rw-r--r--3871/CH5/EX5.28/Ex5_28.sce52
-rw-r--r--3871/CH5/EX5.29/Ex5_29.sce21
-rw-r--r--3871/CH5/EX5.3/Ex5_3.sce24
-rw-r--r--3871/CH5/EX5.30/Ex5_30.sce19
-rw-r--r--3871/CH5/EX5.31/Ex5_31.sce26
-rw-r--r--3871/CH5/EX5.32/Ex5_32.sce23
-rw-r--r--3871/CH5/EX5.33/Ex5_33.sce29
-rw-r--r--3871/CH5/EX5.34/Ex5_34.sce38
-rw-r--r--3871/CH5/EX5.35/Ex5_35.sce18
-rw-r--r--3871/CH5/EX5.36/Ex5_36.sce19
-rw-r--r--3871/CH5/EX5.37/Ex5_37.sce18
-rw-r--r--3871/CH5/EX5.4/Ex5_4.sce22
-rw-r--r--3871/CH5/EX5.5/Ex5_5.sce22
-rw-r--r--3871/CH5/EX5.6/Ex5_6.sce34
-rw-r--r--3871/CH5/EX5.7/Ex5_7.sce16
-rw-r--r--3871/CH5/EX5.8/Ex5_8.sce16
-rw-r--r--3871/CH5/EX5.9/Ex5_9.sce19
37 files changed, 918 insertions, 0 deletions
diff --git a/3871/CH5/EX5.1/Ex5_1.sce b/3871/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..b65775617
--- /dev/null
+++ b/3871/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,24 @@
+//===========================================================================
+//chapter 5 example 1
+
+clc;clear all;
+
+//variable declaration
+K = 24*10^-6; //spring constant in Nm/radian
+I = 5; //current in A
+
+//calculations
+//L = 20+10*theta - 2*(theta^2)
+//partial differentiate w.r.t to theta
+//dL/dtheta = x = 10- 4*theta
+//dL/dtheta = 2*K*theta/(I^2)
+//x = 10-4*theta
+//y = theta/x
+y = ((I^2)/(2*K))*10^-6;
+theta = (10*y)/(1+(4*y)); //defelction for current in radians
+theta1 = ((theta*180)/(%pi));
+
+//result
+
+mprintf("deflection = %3.1f °',theta1);
+
diff --git a/3871/CH5/EX5.10/Ex5_10.sce b/3871/CH5/EX5.10/Ex5_10.sce
new file mode 100644
index 000000000..e8ee25f32
--- /dev/null
+++ b/3871/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,30 @@
+//===========================================================================
+//chapter 5 example 10
+
+clc;clear all;
+
+//variable declaration
+R = 400; //resistance in Ω
+V = 150; //voltmeter reading in V
+I = 0.05; //current in A
+alphac = 0.004; //temperature coefficient of copper
+alphas = 0.00001; //temperature coefficient of eureka
+f = 100; //frequency in Hz
+L = 0.75; //inductance in H
+
+
+//calculations
+//R1 = R+r;
+R1 = V/(I); //total reistance in Ω
+r = R1-R; //swamping resistancein Ω
+R11 = (R*(1+alphac))+(r*(1+alphas)); //total resistance for 1° C rise in temperature in Ω
+e = ((R11-R1)/(R1))*100; //percentage rise in resistance per degree rise in temperature
+W = 2*%pi*f*L; //inductive reactance in Ω
+Z = sqrt((R1^2)+(W^2)); //impedance in Ω
+v = V*(R1/(Z)); //reading indicated on 100 Hz in V
+
+
+//result
+mprintf("R1 =%3.0f",W);
+mprintf("percentage rise in resistance per degree rise in temperature = %3.4f percentage",e);
+mprintf("\nreading indicated on 100 Hz= %3.1f V",v);
diff --git a/3871/CH5/EX5.11/Ex5_11.sce b/3871/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..9b47481e0
--- /dev/null
+++ b/3871/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,23 @@
+//===========================================================================
+//chapter 5 example 11
+clc;clear all;
+
+//variable declaration
+V = 300; //voltage in V
+R = 12000; //coil resistance in Ω
+B = 6*10^-2; //flux density in Wb/m**2
+l = 0.04; //length in m
+r = 0.03; //width in m
+N = 100;
+Tc = 25*10^-7; //torque in Nm per degree
+
+//calculations
+i = V/(R); //current in A
+Td = N*B*i*l*r; //deflecting Torque in Nm
+//Tc=Td;
+//Tc =(25*10^-7)*theta
+theta = Td/(Tc); //defelction in °
+
+//result
+mprintf('defelction = %3.0f °",theta);
+
diff --git a/3871/CH5/EX5.12/Ex5_12.sce b/3871/CH5/EX5.12/Ex5_12.sce
new file mode 100644
index 000000000..d7b933ed3
--- /dev/null
+++ b/3871/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,32 @@
+//===========================================================================
+//chapter 5 example 12
+clc;clear all;
+
+//variable declaration
+V = 0.1; //voltage in V
+R = 200; //coil resistance in Ω
+B = 0.2; //flux density in Wb/m^2
+l = 0.03; //length in m
+r = 0.025; //width in m
+N = 100;
+Tc = 25*10^-7; //torque in Nm per degree
+theta = 100; //deflaction in °
+p = 1.7*10^-8; //specific resistance of coil in Ω-m
+d = 30;
+d1 = 25;
+
+
+//calculations
+i = V/(R); //current in A
+Td = N*B*i*l*r; //deflecting Torque in Nm
+K = Td/(theta); //control constant of spring in N-m
+l = (d+d1)*2*100*10^-3; //length of copper coil in m
+R1 = (R*20)/(100);
+a = (p*l)/(R1); //area of x-section of copper wire inm^2
+D = sqrt((4*a)/(%pi)); //diameter of wire in mm
+
+//result
+
+mprintf("diameter fo wire = %3.3f mm",(D*10^3));
+
+
diff --git a/3871/CH5/EX5.13/Ex5_13.sce b/3871/CH5/EX5.13/Ex5_13.sce
new file mode 100644
index 000000000..c7d9e3799
--- /dev/null
+++ b/3871/CH5/EX5.13/Ex5_13.sce
@@ -0,0 +1,26 @@
+//===========================================================================
+//chapter 5 example 13
+
+clc;clear all;
+
+//variable declaration
+V1 = 50*10^-3; //voltage in V
+I1 = 5; //current in A
+I2 = 10; //current in A
+v1 =4;
+v2 =4.2;
+
+//calculations
+//v1 = (r+R1)*I1
+//v1 = (r+R1)*I2
+//since potential difference is same in both cases
+//v1= v2
+R1 = V1/(I1);
+R2 = V1/(I2);
+r = ((v2*R2)-(v1*R1))/(v1-v2);
+v = (r+R1)*v1; //potential difference in V
+I = v/(r); //current when neither meter in the circuit in A
+
+//result
+mprintf("current when neither meter in the circuit = %3.2f A",I);
+
diff --git a/3871/CH5/EX5.14/Ex5_14.sce b/3871/CH5/EX5.14/Ex5_14.sce
new file mode 100644
index 000000000..ca30e2483
--- /dev/null
+++ b/3871/CH5/EX5.14/Ex5_14.sce
@@ -0,0 +1,27 @@
+//===========================================================================
+//chapter 5 example 14
+clc;clear all;
+
+//variable declaration
+V = 250; //voltage in V
+RA = 100; //resistance in Ω
+RB = 400; //resistance in Ω
+x = 0.005; //error in measuring voltage in
+
+
+//calculations
+I = V/(RA+RB); //current flowing through resistance in A
+VB = I*RB; //potential drop acreoss resitance in V
+//Req = RA+((r*RB)/(r+RB))
+//Ieq =V/Req = V/ RA+((r*RB)/(r+RB))
+//Ieq = (V*(r+RB))/((RA*(r+RB))+(r*RB))
+//V1 = Ieq*(r*RB)/(r+RB)
+// V1 = (V*(r+RB))*(r*RB))/((r+RB)*((RA*(r+RB))+(r*RB)))
+//V1 = (V*r*RB)/((r+RB)*((RA*(r+RB))+(r*RB)))
+//V1 = (200*r)/(80+r)
+V1 = VB*(1-x); //voltage measured with 0.5% error
+r = (V1*80)/(200-V1); //solving equations we get minimum resistance in Ω
+
+//result
+mprintf("minimum resistance = %3.2f Ω",r);
+
diff --git a/3871/CH5/EX5.15/Ex5_15.sce b/3871/CH5/EX5.15/Ex5_15.sce
new file mode 100644
index 000000000..f5d5172e1
--- /dev/null
+++ b/3871/CH5/EX5.15/Ex5_15.sce
@@ -0,0 +1,21 @@
+//===========================================================================
+//chapter 5 example 15
+clc;clear all;
+
+//variable decalartaion
+C = 1*10**-7; //spring torsion constant in N-m/degree
+I = 10; //current in A
+theta = 110; //full-deflection in °
+L1 = 2*10**-6; //initial inductance in uH
+
+//calculations
+Td =C*theta; //full-scale deflceting torque in N-m
+//dM/dtheta =x
+x = Td/(I^2);
+theta1 = ((theta*%pi)/(180)); //converstion of radians to degrees
+dM = x*theta1; //change in inductance in uH
+M = L1+dM; //total inductance in uH
+
+//result
+
+mprintf("total inductance = %3.3f uH",(M*10^6));
diff --git a/3871/CH5/EX5.16/Ex5_16.sce b/3871/CH5/EX5.16/Ex5_16.sce
new file mode 100644
index 000000000..1a9867903
--- /dev/null
+++ b/3871/CH5/EX5.16/Ex5_16.sce
@@ -0,0 +1,37 @@
+//===========================================================================
+//chapter 5 example 16
+
+clc;clear all;
+
+//variable declaration
+theta = 90; //full-deflection in °
+Td = 0.4*10^-4; //full-scale deflecting torque in Nm
+I = 0.05; //current in A
+M = 0.25; //initial inductance in H
+V = 50; //voltage in V
+I = 0.05; //current in A
+f =50; //frequency in Hz
+V2 = 25;
+R = 1000;
+
+
+//calculations
+//dM/dtheta = x
+x = (Td/(I^2)); //change in inductance in H
+dM = (Td/(I^2))*((theta*%pi)/(180)); //change in inductance in H
+M1 = M+dM; //total mutual inductance in H
+R = V/(I); //the resistance of voltmeter in Ω
+Z =sqrt((R**2)+((2*%pi*f*M1)**2)); //toatal impedance in Ω
+V1 = (V/(Z))*R; //voltmeter reading in V
+d = V-V1; //difference in reading in V
+I1 = V2/(R); //current through instrument in A
+theta1 = ((theta*%pi)/(180))*((I1/(I))^2); //defelction
+M2 = M+(x*theta1); //total mutual inductance in H
+Z1 = sqrt((R**2)+((2*%pi*f*M2)**2)); //toatal impedance in Ω
+V21 = (V2*R)/(Z1); //voltmeter reading in V
+d1 = V2-V21; //difference in voltmeter reading in V
+
+//result
+mprintf("impedancewhile measuring the voltage = %3.3f Ω",Z1);
+mprintf("\ndifference in reading = %3.1f V",d);
+mprintf("\ndifference in reading when 25v is used = %3.2f V",d1);
diff --git a/3871/CH5/EX5.17/Ex5_17.sce b/3871/CH5/EX5.17/Ex5_17.sce
new file mode 100644
index 000000000..ff796d7be
--- /dev/null
+++ b/3871/CH5/EX5.17/Ex5_17.sce
@@ -0,0 +1,24 @@
+//===========================================================================
+//chapter 5 example 17
+clc;
+clear all;
+
+//variable declaration
+theta1 = 90; //defelction in °
+theta2 = 360; //defelction in °
+theta3 = 180; //defelction in °
+I1 = 30; //current in A
+I4 = 25; //current in A
+
+//T is proportional to I**2
+//T is proportional to theta
+//theta is proportional to math.sqrt (I)
+//calculations
+I2 = I1*sqrt((theta2/(theta1))); //current corresponding to deflection of 360 °
+I3 = I1*sqrt((theta3/(theta1))); //current corresponding to deflection of 180 °
+theta4 = theta1*((I4/I1)^2); //defelction corresponding tocurrent of 25 A
+
+//result
+mprintf("current corresponding to deflection of 360 ° = %3.2f A",I2);
+mprintf("\ncurrent corresponding to deflection of 180 ° = %3.2f A",I3);
+mprintf("\ndefelction corresponding tocurrent of 25 A = %3.2f °",theta4);
diff --git a/3871/CH5/EX5.18/Ex5_18.sce b/3871/CH5/EX5.18/Ex5_18.sce
new file mode 100644
index 000000000..96122312f
--- /dev/null
+++ b/3871/CH5/EX5.18/Ex5_18.sce
@@ -0,0 +1,30 @@
+//=============================================================
+//Chapter 5 example 18
+
+clc;
+clear all;
+
+//variable declaration
+p = 80;
+q = 60
+
+//i = 80-60*sqrt(2)*sin(theta+%pi/6)
+//i^2 = x = (80)^2)-((2*80*60*sqrt*sin(theta+(%pi/6))0^2)+((80^2)*(sin(theta+(%pi/6))^2))
+//x =a-b*(sin(theta+(%pi/6))^2)+(c)*(sin(theta+(%pi/6))^2)
+//x = (80)^2)-((2*80*60*sqrt*sin(theta+(%pi/6))0^2)+(((80^2)/2)*(1-(cos(theta+(%pi/6))^2))
+//x = a-(b*sin(theta+(%pi/6)))+(c/2)-cos(theta+((pi/6)^2))
+ a = p^2;
+ b =(2*(q^2)*(sqrt(2)));
+ c = (q*sqrt(2))^2;
+ //x = (1/2*%pi)*{(integral(x*dtheta))}(0-2*%pi)
+ //applying integration
+ y =(a+(c/2));
+ x = (1/%pi)*y*(%pi); //Irms^2
+ Irms =sqrt(x); //reading in A
+
+
+ //result
+ mprintf("electrodynamometer instrument indicates the rms value of the current therefore the dreading will be equla ")
+ mprintf("Irms = %3.2f A",Irms);
+
+
diff --git a/3871/CH5/EX5.19/Ex5_19.sce b/3871/CH5/EX5.19/Ex5_19.sce
new file mode 100644
index 000000000..b81b35f24
--- /dev/null
+++ b/3871/CH5/EX5.19/Ex5_19.sce
@@ -0,0 +1,22 @@
+//===========================================================================
+//chapter 5 example 19
+clc;
+clear all;
+
+//variable declaration
+L = 150; //length of working wire at room temperature in mm
+alpha = 16*10^-6; //coefficient of linear expansion
+T = 85; //temperature in ° C
+Si =1; //initial sag in mm
+//calculations
+dL = alpha*L*T; //increase in length of the wire when gets heated through 85 ° C in mm
+M = sqrt(L/(2*dL)); //magnification with no intial sag
+S = sqrt((L*dL)/(2)); //Sag in mm
+Sn = S-Si; //net increase in Sag in mm
+M1 = Sn/(dL); //magnification with initial Sag of 1 mm
+
+//result
+mprintf("magnification with no intial sag = %3.2f",M);
+mprintf("\nSag = %3.2f mm",S);
+mprintf("\nnet increase in Sag =%3.2f mm",Sn);
+mprintf("\nmagnification with initial Sag of 1 mm = %3.2f",M1);
diff --git a/3871/CH5/EX5.2/Ex5_2.sce b/3871/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..be3b32475
--- /dev/null
+++ b/3871/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,26 @@
+//===========================================================================
+//chapter 5 example 2
+
+clc;clear all;
+
+//Variable declaration
+I = 5; //current in A
+d = 30; //deflection
+I2 = 10;
+
+//calculations
+//L = 10+5*theta - 2*(theta^2) //inductancein uH
+//partial differentiate w.r.t to theta
+//dL/dtheta = x = 5- 4*theta
+//dL/dtheta = 2*K*theta/(I^2)
+//x = 10-4*theta
+theta = %pi/(6);
+K = (((5-(4*theta))*10^-6)*(I^2))/(2*theta) //spring constant in Nm/radian
+x = ((2*K)/(I2^2))*10^6;
+theta2 = (5)/(x+4);
+
+//result
+
+mprintf("spring constant = %3.4e Nm/radian",K);
+mprintf("\ndeflection for 10 A current = %3.3f radian",theta2);
+
diff --git a/3871/CH5/EX5.20/Ex5_20.sce b/3871/CH5/EX5.20/Ex5_20.sce
new file mode 100644
index 000000000..c7d7f8f75
--- /dev/null
+++ b/3871/CH5/EX5.20/Ex5_20.sce
@@ -0,0 +1,17 @@
+//===========================================================================
+//chapter 5 example 20
+clc;
+clear all;
+
+//variable declaration
+L = 170; //length of the wire in mm
+dL = 0.2; //increase in length in mm
+L1 =100; //length of the second wire in mm
+
+//calculations
+S = sqrt((L*dL)/(2)); //Sag in mm
+S1 = sqrt((L1*S)/(2)); //Sag in mm
+M = S1/(dL); //magnification
+
+//result
+mprintf("magnification = %3.1f",M);
diff --git a/3871/CH5/EX5.21/Ex5_21.sce b/3871/CH5/EX5.21/Ex5_21.sce
new file mode 100644
index 000000000..57f4f44e5
--- /dev/null
+++ b/3871/CH5/EX5.21/Ex5_21.sce
@@ -0,0 +1,25 @@
+//=============================================================
+//Chapter 5 example 21
+
+clc;
+clear all;
+
+//variable declaration
+I = 10; //current in A
+//e = (alpha*(dt))+(b(dt^2))= alpha*dt
+//dt = (K1*(I^2)*R)
+//theta = K2*e
+//theta = K2*e = K2*K1*alpha*dt = K2*K1*alpha*(I^2)*R
+//thetaF = K3*(I^2)
+//K3 = (thetaF)/(I^2);
+x = 1/(I^2);
+mprintf("K3 = %3.2f *thetaf",x);
+//K3 =thetaF*x
+mprintf("\ntheta = theatF/3");
+//I = sqrt((thetaF/3)*((K3)))
+//I = sqrt((thetaF/3)/K3)
+I =sqrt((1/3)*((1/x)))
+
+
+//result
+mprintf("\ncurrent = %3.2f A",I);
diff --git a/3871/CH5/EX5.22/Ex5_22.sce b/3871/CH5/EX5.22/Ex5_22.sce
new file mode 100644
index 000000000..8f2d0168d
--- /dev/null
+++ b/3871/CH5/EX5.22/Ex5_22.sce
@@ -0,0 +1,19 @@
+//===========================================================================
+//chapter 5 example 22
+
+clc;
+clear all;
+
+//variable declaration
+ Irms = 32; //measured reading reading in A
+ Ir = 30; //rectifier ammeter reading in A
+Ks = 1.11; //form factor for sinusoidal wave
+
+//calculations
+Iav = Ir/(Ks); //average value of current under measurement in A
+e = ((Irms)/(Iav)); //percentage errror in %
+
+//result
+
+mprintf("form factor = %3.3f ",e);
+
diff --git a/3871/CH5/EX5.23/Ex5_23.sce b/3871/CH5/EX5.23/Ex5_23.sce
new file mode 100644
index 000000000..b9231163c
--- /dev/null
+++ b/3871/CH5/EX5.23/Ex5_23.sce
@@ -0,0 +1,19 @@
+//===========================================================================
+//chapter 5 example 23
+clc;
+clear all;
+
+//variable declaration
+ Ir = 2.22; //measured reading reading in A
+Ks = 1.11; //form factor for sinusoidal wave
+
+//calculations
+Iav = Ir/(Ks); //average value of current under measurement in A
+Imax = 2*Iav; //peak value of current in A
+Irms = Imax/(sqrt(3)); //RMS value of current in
+e = ((Ir-Irms)/(Irms))*100; //percentage errror in %
+
+//result
+mprintf("peak value of current = %3.2f A",Imax);
+mprintf("\nRMS value of current = %3.3f A",Irms);
+mprintf("\npercentage error = %3.2f percentage(low)",e);
diff --git a/3871/CH5/EX5.24/Ex5_24.sce b/3871/CH5/EX5.24/Ex5_24.sce
new file mode 100644
index 000000000..69c71a8ae
--- /dev/null
+++ b/3871/CH5/EX5.24/Ex5_24.sce
@@ -0,0 +1,21 @@
+//===========================================================================
+//chapter 5 example 24
+
+clc;clear all;
+
+//variable declaration
+Iav = 40*10^-3; //average value of current in mA
+Ks = 1.11; //assuming form factor for sinusoidal wave
+f = 50; //frequency in Hz
+V = 10^5; //voltage in V
+
+//calculations
+Irms = Iav*Ks; //RMS value of current in A
+//Irms = V/Xc = 2*%pi*f*C*V
+C = Irms/(2*%pi*f*V); //capacitance to be connected in pF
+
+//result
+
+mprintf("capacitance to be connected = %3.0f pF",(C*10^12));
+
+
diff --git a/3871/CH5/EX5.25/Ex5_25.sce b/3871/CH5/EX5.25/Ex5_25.sce
new file mode 100644
index 000000000..00c4205d2
--- /dev/null
+++ b/3871/CH5/EX5.25/Ex5_25.sce
@@ -0,0 +1,21 @@
+//===========================================================================
+//chapter 5 example 25
+
+clc;clear all;
+
+//variable declaration
+Emax = 200; //emf of peak value in V
+R = 10; //resistance in Ω
+
+//calculations
+Imax = Emax/(R); //peak value of current in A
+Iav = (2*Imax)/(%pi); //reading of moving -coil ammeter in A
+Irms = Imax/(sqrt(2)); //reading of moving -iron ammeter in A
+
+//result
+mprintf("reading of moving -coil ammeter = %3.2f A",Iav);
+mprintf("\nreading of moving -iron ammeter = %3.2f A",Irms);
+mprintf("\nreading of hot-wire ammeter = %3.2f A",Irms);
+
+
+
diff --git a/3871/CH5/EX5.26/Ex5_26.sce b/3871/CH5/EX5.26/Ex5_26.sce
new file mode 100644
index 000000000..7674d1771
--- /dev/null
+++ b/3871/CH5/EX5.26/Ex5_26.sce
@@ -0,0 +1,26 @@
+//=============================================================
+//Chapter 5 example 26
+
+clc;
+clear all;
+
+//variable declaration
+Vmax = 100; //maximum value of applied voltage in V
+R = 2; //resistance in Ω
+
+
+//calculations
+Imax = Vmax/R; //maximum value of current flowing through instruments in A
+mprintf("x = (Imax^2)*((sin(theta))^2)");
+//Irms = sqrt((1/2*%pi)*{(integral(x*dtheta))}(0-%pi))
+Irms = sqrt(((Imax^2)/(2*%pi))*((%pi/2)));
+mprintf("\n y = (Imax*sin(theta))");
+//Iav = sqrt((1/2*%pi)*{(integral(y*dtheta))}(0-%pi)
+Iav = Imax/%pi;
+
+
+//result
+mprintf("\nthe hot-wire ammeter reads rms value = %3.2f A",Irms);
+mprintf("\nmoving coil ammeter reads average value = %3.2f A",Iav);
+
+
diff --git a/3871/CH5/EX5.27/Ex5_27.sce b/3871/CH5/EX5.27/Ex5_27.sce
new file mode 100644
index 000000000..63e5bf63a
--- /dev/null
+++ b/3871/CH5/EX5.27/Ex5_27.sce
@@ -0,0 +1,32 @@
+//=============================================================
+//Chapter 5 example 27
+
+clc;
+clear all;
+
+
+//variable declaration
+//V = (5*sin(theta))+(0.6*sin(3*theta))\
+
+a = 5;
+b = 0.6;
+rd = 35; //resistance in Ω
+ra = 30; //resistance in Ω
+
+//calculations
+R = (3*rd)+ra; //resitance in Ω
+//i = v/R
+//i = (5*sin(theta)/R)+(0.6*(sin(3*theta)/R))
+x1 = a/R;
+y1 =b/R;
+//i = (x1*sin(theta))+(y1*sin(3*theta))
+//Iav = ((1/%pi)*{(integral(i*dtheta))}(0-%pi)))
+//Iav = (1/%pi)*((0.5*sin(theta))-(0.006/3)*(cos(3*theta)))
+//solving above equation we get (1/%pi)*(1)
+p = (-0.05*((cos((180*%pi/180))-cos(0))))-((0.002*((cos(3*180*%pi/180))-cos(3*0))));
+z = (1/%pi)*p; //average value in mA
+
+
+//result
+mprintf("average value reading of PMMC ammeter = %3.1f mA",(z*10^3));
+
diff --git a/3871/CH5/EX5.28/Ex5_28.sce b/3871/CH5/EX5.28/Ex5_28.sce
new file mode 100644
index 000000000..408b88c76
--- /dev/null
+++ b/3871/CH5/EX5.28/Ex5_28.sce
@@ -0,0 +1,52 @@
+//=============================================================
+//Chapter 5 example 28
+
+clc;
+clear all;
+
+
+//variable declaration
+V = 230; //RMS value of voltage applied in volts
+r1 = 115; //resistance in Ω
+r2 = 115; //resistance in Ω
+r3 = 575; //resistance in Ω
+
+
+
+//calculations
+Vmax =230*sqrt(2);
+R1 =r1+r2; //resiatance in one directions in Ω
+R2 =r2+r3; //resiatance in other directions in Ω
+Imax1 = Vmax/R1; //current(maximum value) in one direction in A
+Imax2 = Vmax/R2; //current(maximum value) in other direction in A
+//Iav = Iav1-Iav2
+//x = (Imax1*sin(theta))
+//Iav = ((1/2*%pi)*{(integral(x*dtheta))}(0-%pi)))
+//y = (Imax2*sin(theta))
+//Iav = ((1/2*%pi)*{(integral(y*dtheta))}(0-%pi)))
+z1 =-((cos(180*%pi/180))-cos(0))
+z2 = -((cos(180*%pi/180))-cos(0))
+A = ((Imax1*z1)-(Imax2*z2));
+Iav = A/(2*%pi);
+//x1 = (Imax1*sin(theta))^2
+//I1 = ((1/2*%pi)*{(integral(x1*dtheta))}(0-%pi)))
+//y1 = (Imax2*sin(theta))^2
+//I2 = ((1/2*%pi)*({(integral((1-cos(2*theta))/2*dtheta))}(0-%pi)))-{(integral((1-cos(2*theta))/2*dtheta))}(0-%pi)))
+//Irms= I1+I2
+//Irms = ((1/2*%pi)*{(integral(y1*dtheta))}(0-%pi)))
+Z1 =-((cos(2*180*%pi/180))-cos(180*%pi/180));
+Z2 = -((cos(2*180*%pi/180))-cos(180*%pi/180));
+Irms1 = (((Imax1^2)/(2*2*%pi))*(%pi-0))+(((Imax2^2)/(2*2*%pi))*(%pi-0))-Z1+Z2
+Irms =sqrt(Irms1);
+P = (1/2)*(((V^2)/R1)+((V^2)/R2));
+Irms11 = 1;
+Irms22 = 1/3;
+Pd = (((Irms11^2)*r2)+((Irms22^2)*r3))/2;
+
+
+//result
+mprintf("Iav = %3.2f A",Irms1);
+mprintf("\npower taken from the mains = %3.2f",P);
+mprintf("\npower dissipated in rectifying device =%3.2f W",Pd);
+
+
diff --git a/3871/CH5/EX5.29/Ex5_29.sce b/3871/CH5/EX5.29/Ex5_29.sce
new file mode 100644
index 000000000..76d4b1606
--- /dev/null
+++ b/3871/CH5/EX5.29/Ex5_29.sce
@@ -0,0 +1,21 @@
+//=============================================================
+//Chapter 5 example 29
+
+clc;
+clear all;
+
+
+//variable declaration
+V1 = 1000; //potential of vane in volts
+
+//calculations
+//v = VA-VB
+mprintf("theta 10 S D");
+mprintf("\ntheta praportional to Tt praportional to 2*V1*V")
+mprintf("\n10 praportional to 2 praportional to 1000");
+mprintf("\ndividing above expressions ")
+v = (10/25)*(2500/2000);
+
+//result
+mprintf("v = %3.2f volt",v);
+
diff --git a/3871/CH5/EX5.3/Ex5_3.sce b/3871/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..e53bdfa7c
--- /dev/null
+++ b/3871/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,24 @@
+//===========================================================================
+//chapter 5 example 3
+clc;
+clear all;
+
+//variable declaration
+R = 500; //resistance in
+r = 2000; //non inductive resistance in
+V = 250; //voltage in V
+f = 50; //frequency in Hz
+L = 1; //inductance in H
+
+
+//calculations
+x = (r+R)^2;
+W = (2*%pi*f*L)^2;
+Z =sqrt(x+W); //impedance of the instrument circuit
+I = V/(Z); //current drawn by instrument in A
+I2 = V/(R+r); //since voltmeter reads correctly on dc supply on 250 V,corresponding current in A
+V1 = V*(I/(I2)); //voltmeter reading when connected to 250V ,50Hz supply
+
+//result
+mprintf("voltmeter reading = %3.1d V",V1);
+
diff --git a/3871/CH5/EX5.30/Ex5_30.sce b/3871/CH5/EX5.30/Ex5_30.sce
new file mode 100644
index 000000000..a9beade97
--- /dev/null
+++ b/3871/CH5/EX5.30/Ex5_30.sce
@@ -0,0 +1,19 @@
+//===========================================================================
+//chapter 5 example 30
+
+clc;clear all;
+
+//variable declaration
+d = 0.08; //diameter in m
+D = 0.004; //distance between plates in m
+F = 0.002; //force in Newton
+
+//calculations
+e0 = 8.85*10^-12; //permittivity in N
+A = (%pi/4)*(d^2); //area of the plates in m**2
+x = (F*2*(D^2))/(e0*A);
+V = sqrt(x); //potential diference in V
+
+//result
+mprintf("potential diference = %3.1f V",V);
+mprintf("\nNote:final answer in textbook is wrong printed")
diff --git a/3871/CH5/EX5.31/Ex5_31.sce b/3871/CH5/EX5.31/Ex5_31.sce
new file mode 100644
index 000000000..3daf51b9f
--- /dev/null
+++ b/3871/CH5/EX5.31/Ex5_31.sce
@@ -0,0 +1,26 @@
+//===========================================================================
+//chapter 5 example 31
+
+clc;
+clear all;
+
+//variable declaration
+d = 0.1; //diameter in m
+F = 0.005; //force in Newton
+V = 10000; //potential diference in V
+e0 = 8.85*10^-12; //permittivity in N
+d2 = 26.4*10^-3; //distance between plates in mm
+d1 = 25.4*10^-3; //distance between plates in mm
+
+//calculations
+
+A = (%pi/4)*(d^2); //area of the plates in m**2
+x = sqrt((e0*A)/(2*F));
+d2 = x*V; //distance between plates in mm
+//C = e0*A/d
+x1 = 1/d1;
+x2 = 1/d2;
+C = e0*A*(x1-x2); //change in capacitance in uF
+
+//result
+mprintf("change in capacitance due to change in distance between plates from 26.4 to 25.4 mm = %3.2f u uF",(C*10^12));
diff --git a/3871/CH5/EX5.32/Ex5_32.sce b/3871/CH5/EX5.32/Ex5_32.sce
new file mode 100644
index 000000000..f39316092
--- /dev/null
+++ b/3871/CH5/EX5.32/Ex5_32.sce
@@ -0,0 +1,23 @@
+//===========================================================================
+//chapter 5 example 32
+
+clc;
+clear all;
+
+//variable declaration
+K = 0.0981*10^-6;
+theta = 80; //full scale of deflection in °
+V = 1000; //voltage in V
+C = 10*10^-12; //capacitance in F
+
+//calculations
+//x =dC/dtheta = (2*K*theta)/V^2
+x = (2*K*theta)/V^2; //rate of change of capacitance
+dC = x*(theta/180)*%pi;
+C1 = C+dC;
+
+//result
+mprintf("capacitance when reading 1kV = %3.3e F",C1);
+
+
+
diff --git a/3871/CH5/EX5.33/Ex5_33.sce b/3871/CH5/EX5.33/Ex5_33.sce
new file mode 100644
index 000000000..cec96d0d6
--- /dev/null
+++ b/3871/CH5/EX5.33/Ex5_33.sce
@@ -0,0 +1,29 @@
+//===========================================================================
+//chapter 5 example 33
+
+clc;
+clear all;
+
+//variable declaration
+//x = dC/d(theta)
+//Td = (1/2)*(V^2)*(dC/d(theta))
+x = 0.5*10^-12; //dC/d(theta) in pF/degree
+y = 1.5*10^-12; //dC/d(theta) in pF/degree
+T = 8*10^-6; //torison constant in Nm
+N1 =100;
+N2 =35;
+
+//calculations
+x1 = x*(180/%pi); //dC/d(theta) in pF/radian
+y1 = y*(180/%pi); //dC/d(theta) in pF/radian
+//Td = Tc = T*N*(%pi/180)
+Td = T*N1*(%pi/180); //deflecting torque in N-m
+V1 = sqrt((2*Td)/x1); //voltage required in V
+Td1 = T*N2*(%pi/180); //deflecting torque in N-m
+V2 = sqrt((2*Td1)/y1); //voltage required in V
+
+//result
+mprintf("voltage deflection at 100 = %3.0f V",V1);
+mprintf("\nvoltage deflection at 100 = %3.0f V",V2);
+
+
diff --git a/3871/CH5/EX5.34/Ex5_34.sce b/3871/CH5/EX5.34/Ex5_34.sce
new file mode 100644
index 000000000..31c29cd5f
--- /dev/null
+++ b/3871/CH5/EX5.34/Ex5_34.sce
@@ -0,0 +1,38 @@
+//===========================================================================
+//chapter 5 example 34
+
+clc;
+clear all;
+
+//variable declaration
+e0 =8.854*10^-12;
+d =0.05;
+er = 1;
+a = 0.25;
+V1 = 12000; //voltage in V
+V2 = 32000; //voltage in V
+
+
+//calculations
+//x-x0 = (1/2)*((V^2)/k)*(dc/dx)
+//C =(2*e0*er*A)/d
+//dC =(2*e0*er*a*x)/d
+// y = dC/dx = (2*e0*er*a)/d
+y = (2*e0*er*a)/d;
+X1 = 0.25/4;
+// A =x1+x01 = (1/2)*((V1^2)/k)*(dc/dx)
+X2 = 0.25/2;
+//B = x2+x01 = (1/2)*((V2^2)/k)*(dc/dx)
+//C = B/A =(V2/V1)^2
+C = (V2/V1)^2;
+x01 = (X2-(C*X1))/(1-C);
+k = ((1/2)*((V1^2))*(y))/(X1-x01);
+X3 = (3/4)*0.25;
+V = sqrt(((X3-x01)*2*k)/y); //voltage in V
+
+//result
+mprintf("voltage required to pull the plate three quarte way in = %3.3f KV",(V*10^-3));
+
+
+
+
diff --git a/3871/CH5/EX5.35/Ex5_35.sce b/3871/CH5/EX5.35/Ex5_35.sce
new file mode 100644
index 000000000..24af63b2a
--- /dev/null
+++ b/3871/CH5/EX5.35/Ex5_35.sce
@@ -0,0 +1,18 @@
+//===========================================================================
+//chapter 5 example 35
+
+clc;
+clear all;
+
+//variable declaration
+e = 8.85*10^-12;
+V = 10000; //voltage in V
+r = 40*10^-3; //radius in m
+
+//calcaulations
+d = (4/2)*10^-3; //voltage in V
+theta = (100)*(%pi/180);
+k = (2.5*e*(r^2)*(V^2))/(d*theta);
+
+//result
+mprintf("spring constant = %3.3e Nm per radian",k);
diff --git a/3871/CH5/EX5.36/Ex5_36.sce b/3871/CH5/EX5.36/Ex5_36.sce
new file mode 100644
index 000000000..7b307de90
--- /dev/null
+++ b/3871/CH5/EX5.36/Ex5_36.sce
@@ -0,0 +1,19 @@
+//===========================================================================
+//chapter 5 example 36
+
+clc;
+clear all;
+
+//variable declaration
+theta1 = 105; //deflection in °
+I1 = 20; //current in A
+I2 = 20; //current in A
+f1 = 50; //frequency in Hz
+f2 = 75; //frequency in Hz
+
+
+//calculations
+theta = (theta1)*((I2/I1)^2)*(f2/f1);
+
+//result
+mprintf("deflection of the instrument while measuring 20 A = %3.1f °",theta);
diff --git a/3871/CH5/EX5.37/Ex5_37.sce b/3871/CH5/EX5.37/Ex5_37.sce
new file mode 100644
index 000000000..795c1454b
--- /dev/null
+++ b/3871/CH5/EX5.37/Ex5_37.sce
@@ -0,0 +1,18 @@
+//===========================================================================
+//chapter 5 example 37
+clc;
+clear all;
+
+//variable declaration
+V1 = 240; //voltage in V
+theta1 = 300; // defelection in °
+theta2 = 180; // defelection in °
+
+//calculations
+//T praportional to V^2/Z)*(f*cos(alpha)*(sin(beta)))
+//T praportional V^2
+//theta praportional to V^2
+V2 = V1*sqrt(theta2/theta1);
+
+//result
+mprintf("voltage for deflection of 180° =%3.0f° ",V2);
diff --git a/3871/CH5/EX5.4/Ex5_4.sce b/3871/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..9653f766d
--- /dev/null
+++ b/3871/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,22 @@
+//===========================================================================
+//chapter 5 example 4
+clc;clear all;
+
+//variable declaration
+Vac = 500; //voltage in V
+Iac = 0.1; //current in A
+f = 50; //frequency in Hz
+L = 0.8; //inductance in H
+Vdc = 300; //voltage in V
+Z =5000;
+
+//calculations
+W = 2*(%pi)*f*L;
+R = (sqrt((Z^2)-(W^2))); //resistance in Ω
+Idc = Vdc/(R); //instrument current in A
+V = (Vac/(Iac))*(Idc); //Reading of instrument when connected to 300V in V
+
+//result
+mprintf("Reading of instrument when connected to 300V = %3.1f V",V);
+
+
diff --git a/3871/CH5/EX5.5/Ex5_5.sce b/3871/CH5/EX5.5/Ex5_5.sce
new file mode 100644
index 000000000..8103c1ffe
--- /dev/null
+++ b/3871/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,22 @@
+//========================================================
+//chapter 5 example 5
+clc;clear all;
+
+//variable decalaration
+Iac = 0.1; //current in A
+f = 50; //frequency in Hz
+L = 0.8; //inductance in H
+Vac = 300; //voltage in V
+V = 200; //true value in V
+
+//calculations
+XL = 2*%pi*f*L; //instrument reactance in Ω
+Z = Vac/(Iac); //instrument impedance in Ω
+R1 = sqrt((Z^2)-(XL^2)); //instrument resistance(R+r) in Ω
+Idc = V/(R1); //instrument current when connected to 200V dc supply
+V1 = (Idc*Vac)/(Iac); //reading of the instrument when connected to 200V dc supply
+e = ((V1-V)/(V))*100;
+
+//result
+mprintf("percentage error = %3.2f percentage",e);
+
diff --git a/3871/CH5/EX5.6/Ex5_6.sce b/3871/CH5/EX5.6/Ex5_6.sce
new file mode 100644
index 000000000..aad9838c6
--- /dev/null
+++ b/3871/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,34 @@
+//=============================================================
+//Chapter 5 example 6
+
+clc;clear all;
+
+//variable declaration
+R = 50; //resistance of the magnetic coil in Ω
+Rt = 500; //resistance in Ω
+L = 0.09; //inductance of the voltmeter in H
+f = 50;
+I = 1;
+
+
+//calculations
+r = Rt-R; //swamping resistance in Ω
+X = (2*%pi*f*r)^2;
+Y = L*x;
+Y1 = I*L;
+//L = C*r^2/(I+w^2*C^2*r^2)
+//C*r^2 = L*I+L*w^2*C^2*r^2
+//C*r^2 =y1+x*(C^2)
+//x*(C^2)-C*r^2+y1;
+a = X;
+b = -r^2;
+c = Y1;
+x = (-b-sqrt((b^2)-(4*a*c)))/(2*a); //we consider the positive value
+
+
+
+//result
+mprintf("swamping resistance = %3.2e",x);
+
+
+
diff --git a/3871/CH5/EX5.7/Ex5_7.sce b/3871/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..e2885ed6d
--- /dev/null
+++ b/3871/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,16 @@
+//==========================================================================
+//chapter 5 example 7
+clc;clear all;
+
+//variable declaration
+R = 50; //resistance of the magnetic coil in Ω
+Rt = 500; //resistance in Ω
+L = 0.09; //inductance of the voltmeter in H
+
+//calculations
+r =Rt-R;
+C = (L/(r^2)); //capacitance to be placed in u F
+
+//result
+mprintf("capacitance to be placed to make the instrument read correctly bot dc as well as ac = %3.3fe uF",(C*10^6));
+
diff --git a/3871/CH5/EX5.8/Ex5_8.sce b/3871/CH5/EX5.8/Ex5_8.sce
new file mode 100644
index 000000000..06cf9acfc
--- /dev/null
+++ b/3871/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,16 @@
+//===========================================================================
+//chapter 5 example 8
+clc;clear all;
+
+//variable decalaration
+Td = 4*10^-5; //full-scale defelcting torque in N-m
+I = 10; //full-scale current in A
+
+//calculations
+//Td = (1/2)*(I^2)*(dL/dtheta);
+//dL/dtheta = x
+x = (2*Td)/(I^2);
+
+//result
+mprintf('rate of change of selfinductance = %3.1f uH/rad",(x*10^6));
+
diff --git a/3871/CH5/EX5.9/Ex5_9.sce b/3871/CH5/EX5.9/Ex5_9.sce
new file mode 100644
index 000000000..5fa635988
--- /dev/null
+++ b/3871/CH5/EX5.9/Ex5_9.sce
@@ -0,0 +1,19 @@
+//===========================================================================
+//chapter 5 example 9
+clc;clear all;
+
+//variable declaration
+//dL/dtheta = x
+y = 2.3*10^-6;
+Td1 = 5*10**-7;
+t = 52;
+
+//calculations
+x = y*(180/%pi);
+Td = Td1*t;
+//Td = (1/2)*(I**2)*(dL/dtheta);
+I = sqrt((Td*2)/(x)); //current in A
+
+//result
+mprintf("current = %3.2f A",I);
+