diff options
Diffstat (limited to '3862/CH11')
-rw-r--r-- | 3862/CH11/EX11.10/Ex11_10.sce | 80 | ||||
-rw-r--r-- | 3862/CH11/EX11.11/Ex11_11.sce | 39 | ||||
-rw-r--r-- | 3862/CH11/EX11.2/Ex11_2.sce | 52 | ||||
-rw-r--r-- | 3862/CH11/EX11.3/Ex11_3.sce | 26 | ||||
-rw-r--r-- | 3862/CH11/EX11.4/Ex11_4.sce | 24 | ||||
-rw-r--r-- | 3862/CH11/EX11.6/Ex11_6.sce | 28 | ||||
-rw-r--r-- | 3862/CH11/EX11.7/Ex11_7.sce | 53 | ||||
-rw-r--r-- | 3862/CH11/EX11.9/Ex11_9.sce | 29 |
8 files changed, 331 insertions, 0 deletions
diff --git a/3862/CH11/EX11.10/Ex11_10.sce b/3862/CH11/EX11.10/Ex11_10.sce new file mode 100644 index 000000000..e7b003d81 --- /dev/null +++ b/3862/CH11/EX11.10/Ex11_10.sce @@ -0,0 +1,80 @@ +clear +// + +P1=(20) //vertical loading from A at distance of 1m,KN. +P2=(20) //vertical loading from A at distance of 2m,KN. +P3=(20) //vertical loading from A at distance of 3m,KN. +Ra=(P1+P2+P3)/2 //Due to symmetry + +Rb=Ra +//At section 1.5 m from A +F=(Ra-P1)*1000 +M=((Ra*1.5-P1*0.5)*1000000) +b=(100) +h=(180) + +I=((b*(h**3))/12) + +// Bending stress +//f=M*y/I +y11=0 +f1=(-1)*M*y11/I +y22=45 +f2=(-1)*M*y22/I +y33=90 +f3=(-1)*M*y33/I +//Shearing stress at a fibre ‘y’ above N–A is +//q=(F/(b*I))*(A*y1) +//at y=0, +y1=45 +A1=b*90 +q1=(F/(b*I))*(A1*y1) +//at y=45 +y2=(90-45/2) +A2=b*45 +q2=(F/(b*I))*(A2*y2) +//at y=90 +q3=0 + +//(a) At neutral axis (y = 0) : The element is under pure shear + +py=0 + +p1=(f1+py)/2+sqrt((((f1-py)/2)**2)+(q1**2)) + +p2=(f1+py)/2-sqrt((((f1-py)/2)**2)+(q1**2)) +printf("\n (i) p1= %0.4f N/mm^2",p1) +printf("\n p2= %0.4f N/mm^2",p2) + +theta1=45 +theta2=theta1+90 +printf("\n theta= %0.0f ° and %0.0f °",theta1,theta2) + +//(b) At (y = 45) +py=0 + +p1=(f2+py)/2+sqrt((((f2-py)/2)**2)+(q2**2)) + +p2=(f2+py)/2-sqrt((((f2-py)/2)**2)+(q2**2)) +printf("\n (ii) p1= %0.4f N/mm^2",p1) +printf("\n p2= %0.4f N/mm^2",p2) + +thetab1=(atan((2*q2)/(f2-py))*180)/(%pi*2) +thetab2=thetab1+90 +printf("\n theta= %0.0f ° and %0.0f °",thetab1,thetab2) +//mistake in book +printf("\n mistake in book") + +//(c) At Y=90 + +py=0 + +p1=(f3+py)/2+sqrt((((f3-py)/2)**2)+(q3**2)) + +p2=(f3+py)/2-sqrt((((f3-py)/2)**2)+(q3**2)) +printf("\n (iii) p1= %e N/mm^2",p1) +printf("\n p2= %0.4f N/mm^2",p2) + +thetac1=(atan((2*q3)/(f3-py))*180)/(%pi*2) +thetac2=thetac1+90 +printf("\n theta= %0.0f ° and %0.0f °",thetac1,thetac2) diff --git a/3862/CH11/EX11.11/Ex11_11.sce b/3862/CH11/EX11.11/Ex11_11.sce new file mode 100644 index 000000000..d7780da3c --- /dev/null +++ b/3862/CH11/EX11.11/Ex11_11.sce @@ -0,0 +1,39 @@ +clear +// + +//variable declaration +L=(6) //m +w=(60) //uniformly distributed load,KN/m +Rs=L*w/2 //Reaction at support,KN + +//Moment at 1.5 m from support +M =( Rs*1.5-(w*(1.5**2)/2)) +//Shear force at 1.5 m from support +F=Rs-1.5*w + +B=(200) //width of I-beam,mm +H=(400) //height or I-beam,mm +b=(190) +h=(380) +I= (B*(H**3)/12)-(b*(h**3)/12) + +//Bending stress at 100 mm above N–A +y=100 + +f=M*1000000*y/I + +//Thus the state of stress on an element at y = 100 mm, as px = f,py=0 +px=-f +py=0 +A=200*10*195+10*90*145 +q=(F*1000*(A))/(10*I) //shearing stress,N/mm^2 + +p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2)) +p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2)) +printf("\n p1= %0.2f N/mm^2",p1) +printf("\n p2= %0.2f N/mm^2",p2) + + +qmax=sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n qmax= %0.2f N/mm^2",qmax) diff --git a/3862/CH11/EX11.2/Ex11_2.sce b/3862/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..93cae8d59 --- /dev/null +++ b/3862/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,52 @@ +clear +// + +//A material has strength in tension, compression and shear as 30N/mm2, 90 N/mm2 and 25 N/mm2, respectively. If a specimen of diameter 25 mm is tested in tension and compression identity the failure surfaces and loads. + +//variable declaration + +//In tension: Let axial direction be x direction. Since it is uniaxial loading, py = 0, q = 0 and only px exists.when the material is subjected to full tensile stress, px = 30 N/mm^2. + +pt=(30) +pc=(90) +ps=(25) + +d=(25) +px=(30) //N/mm^2 +py=0 +q=0 +p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2)) + +p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2)) + +qmax=(px-py)/2 + +//Hence failure criteria is normal stress p1 + +A=%pi*(d**2)/4 + +//Corresponding load P is obtained by +p=p1 +P=p1*A + +printf("\n (a) P= %0.2f N",P) + +//In case of compression test, + +px=-pc + +P=-px*A + +printf("\n (b) P= %0.2f N compressive",(-P)) + +//at this stage + +qmax=sqrt((((px-py)/2**2))+(q**2)) + +printf("\n Material fails because of maximum shear and not by axial compression.") +qmax=25 +px=2*qmax + +P=px*A +printf("\n P= %0.0f N",P) +printf("\n The plane of qmax is at 45° to the plane of px. ") diff --git a/3862/CH11/EX11.3/Ex11_3.sce b/3862/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..9ebd4586b --- /dev/null +++ b/3862/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,26 @@ +clear +//The direct stresses at a point in the strained material are 120 N/mm2 compressive and 80 N/mm2 tensile. There is no shear stress. + +// +//variable declaration + +//The plane AC makes 30° (anticlockwise) to the plane of px (y-axis). Hence theta= 30°. px = 80 N/mm^2 py = – 120 N/mm^2 ,q = 0 + +px=(80) +py=(-120) +q=(0) +theta=30 +pn=((px+py)/2)+((px-py)/2)*cos(2*theta*%pi/180)+q*sin(2*theta*%pi/180) + +printf("\n pn= %0.0f N/mm^2",pn) + +pt=((px-py)/2)*sin(2*theta*%pi/180)-q*cos(2*theta*%pi/180) + +printf("\n pt= %0.1f N/mm^2",pt) +p=sqrt((pn**2)+(pt**2)) + +printf("\n p= %0.2f N/mm^2",p) + +alpha=atan(pn/pt)*180/%pi + +printf("\n alpha= %0.1f °",alpha) diff --git a/3862/CH11/EX11.4/Ex11_4.sce b/3862/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..fdc03672c --- /dev/null +++ b/3862/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,24 @@ +clear +// +//variable declaration +//Let the principal plane make anticlockwise angle theta with the plane of px with y-axis. Then + +px=(200) //N/mm^2 +py=(150) //N/mm^2 +q=(100) //N/mm^2 + +theta1=(atan((2*q)/(px-py))*180)/(%pi*2) +theta2=90+theta1 +printf("\n theta= %0.2f ° and %0.2f °",theta1,theta2) + +p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n p1= %0.2f N/mm^2",p1) + +p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n p2= %0.2f N/mm^2",p2) + +qmax=sqrt((((px-py)/2**2))+(q**2)) + +printf("\n qmax= %0.2f N/mm^2",qmax) diff --git a/3862/CH11/EX11.6/Ex11_6.sce b/3862/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..04a7891f6 --- /dev/null +++ b/3862/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,28 @@ +clear +// +//variable declaration +//Let the principal plane make anticlockwise angle theta with the plane of px with y-axis. Then + +px=(-100) //N/mm^2 +py=(-75) //N/mm^2 +q=(-50) //N/mm^2 + + +p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n p1= %0.2f N/mm^2",p1) + +p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n p2= %0.2f N/mm^2",p2) + +qmax=sqrt((((px-py)/2**2))+(q**2)) + +printf("\n qmax= %0.2f N/mm^2",qmax) + +//let theta be the inclination of principal stress to the plane of px. + + +theta1=(atan((2*q)/(px-py))*180)/(%pi*2) +theta2=90+theta1 +printf("\n theta= %0.2f ° and %0.2f °",theta1,theta2) diff --git a/3862/CH11/EX11.7/Ex11_7.sce b/3862/CH11/EX11.7/Ex11_7.sce new file mode 100644 index 000000000..7faeff669 --- /dev/null +++ b/3862/CH11/EX11.7/Ex11_7.sce @@ -0,0 +1,53 @@ +clear +// +//variable declaration +//Let the principal plane make anticlockwise angle theta with the plane of px with y-axis. Then + +px=(-50) //N/mm^2 +py=(100) //N/mm^2 +q=(75) //N/mm^2 + + +p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n (i) p1= %0.2f N/mm^2",p1) + +p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2)) + +printf("\n p2= %0.2f N/mm^2",p2) + +qmax=sqrt((((px-py)/2**2))+(q**2)) + +printf("\n (ii) qmax= %0.2f N/mm^2",qmax) + +//let theta be the inclination of principal stress to the plane of px. + + +theta1=(atan((2*q)/(px-py))*180)/(%pi*2) + +printf("\n theta= %0.2f ° clockwise",theta1) + +//Plane of maximum shear makes 45° to it + +theta2=theta1+45 +printf("\n theta2= %0.2f °",theta2) + +//Normal stress on this plane is given by + +pn=((px+py)/2)+((px-py)/2)*cos(2*theta2*%pi/180)+q*sin(2*theta2*%pi/180) + +pt=qmax + +//Resultant stress +p=sqrt((pn**2)+(pt**2)) + +printf("\n p= %0.2f N/mm^2",p) + +//Let ‘p’ make angle phi to tangential stress (maximum shear stress plane). + +phi=atan(pn/pt)*180/%pi + +printf("\n phi= %0.1f °",phi) + +//there is mistake in book +printf("\n mitake in book answer is wrong") diff --git a/3862/CH11/EX11.9/Ex11_9.sce b/3862/CH11/EX11.9/Ex11_9.sce new file mode 100644 index 000000000..e783ab20c --- /dev/null +++ b/3862/CH11/EX11.9/Ex11_9.sce @@ -0,0 +1,29 @@ +clear +// + +//variable declaration + +w=(100) //wide of rectangular beam,mm +h=(200) //height or rectangular beam dude,mm + +I=w*(h**3)/12 + +//At point A, which is at 30 mm below top fibre +y=100-30 +M=(80*1000000) //sagging moment,KN-m + +fx=M*y/I + +px=-fx +F=(100*1000 ) //shear force,N +b=(100) +A=b*30 +y1=100-15 + +q=(F*(A*y1))/(b*I) //shearing stress,N/mm^2 + +py=0 +p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2)) +p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2)) +printf("\n p1= %0.2f N/mm^2",p1) +printf("\n p2= %0.2f N/mm^2",p2) |