summaryrefslogtreecommitdiff
path: root/3862/CH11
diff options
context:
space:
mode:
Diffstat (limited to '3862/CH11')
-rw-r--r--3862/CH11/EX11.10/Ex11_10.sce80
-rw-r--r--3862/CH11/EX11.11/Ex11_11.sce39
-rw-r--r--3862/CH11/EX11.2/Ex11_2.sce52
-rw-r--r--3862/CH11/EX11.3/Ex11_3.sce26
-rw-r--r--3862/CH11/EX11.4/Ex11_4.sce24
-rw-r--r--3862/CH11/EX11.6/Ex11_6.sce28
-rw-r--r--3862/CH11/EX11.7/Ex11_7.sce53
-rw-r--r--3862/CH11/EX11.9/Ex11_9.sce29
8 files changed, 331 insertions, 0 deletions
diff --git a/3862/CH11/EX11.10/Ex11_10.sce b/3862/CH11/EX11.10/Ex11_10.sce
new file mode 100644
index 000000000..e7b003d81
--- /dev/null
+++ b/3862/CH11/EX11.10/Ex11_10.sce
@@ -0,0 +1,80 @@
+clear
+//
+
+P1=(20) //vertical loading from A at distance of 1m,KN.
+P2=(20) //vertical loading from A at distance of 2m,KN.
+P3=(20) //vertical loading from A at distance of 3m,KN.
+Ra=(P1+P2+P3)/2 //Due to symmetry
+
+Rb=Ra
+//At section 1.5 m from A
+F=(Ra-P1)*1000
+M=((Ra*1.5-P1*0.5)*1000000)
+b=(100)
+h=(180)
+
+I=((b*(h**3))/12)
+
+// Bending stress
+//f=M*y/I
+y11=0
+f1=(-1)*M*y11/I
+y22=45
+f2=(-1)*M*y22/I
+y33=90
+f3=(-1)*M*y33/I
+//Shearing stress at a fibre ‘y’ above N–A is
+//q=(F/(b*I))*(A*y1)
+//at y=0,
+y1=45
+A1=b*90
+q1=(F/(b*I))*(A1*y1)
+//at y=45
+y2=(90-45/2)
+A2=b*45
+q2=(F/(b*I))*(A2*y2)
+//at y=90
+q3=0
+
+//(a) At neutral axis (y = 0) : The element is under pure shear
+
+py=0
+
+p1=(f1+py)/2+sqrt((((f1-py)/2)**2)+(q1**2))
+
+p2=(f1+py)/2-sqrt((((f1-py)/2)**2)+(q1**2))
+printf("\n (i) p1= %0.4f N/mm^2",p1)
+printf("\n p2= %0.4f N/mm^2",p2)
+
+theta1=45
+theta2=theta1+90
+printf("\n theta= %0.0f ° and %0.0f °",theta1,theta2)
+
+//(b) At (y = 45)
+py=0
+
+p1=(f2+py)/2+sqrt((((f2-py)/2)**2)+(q2**2))
+
+p2=(f2+py)/2-sqrt((((f2-py)/2)**2)+(q2**2))
+printf("\n (ii) p1= %0.4f N/mm^2",p1)
+printf("\n p2= %0.4f N/mm^2",p2)
+
+thetab1=(atan((2*q2)/(f2-py))*180)/(%pi*2)
+thetab2=thetab1+90
+printf("\n theta= %0.0f ° and %0.0f °",thetab1,thetab2)
+//mistake in book
+printf("\n mistake in book")
+
+//(c) At Y=90
+
+py=0
+
+p1=(f3+py)/2+sqrt((((f3-py)/2)**2)+(q3**2))
+
+p2=(f3+py)/2-sqrt((((f3-py)/2)**2)+(q3**2))
+printf("\n (iii) p1= %e N/mm^2",p1)
+printf("\n p2= %0.4f N/mm^2",p2)
+
+thetac1=(atan((2*q3)/(f3-py))*180)/(%pi*2)
+thetac2=thetac1+90
+printf("\n theta= %0.0f ° and %0.0f °",thetac1,thetac2)
diff --git a/3862/CH11/EX11.11/Ex11_11.sce b/3862/CH11/EX11.11/Ex11_11.sce
new file mode 100644
index 000000000..d7780da3c
--- /dev/null
+++ b/3862/CH11/EX11.11/Ex11_11.sce
@@ -0,0 +1,39 @@
+clear
+//
+
+//variable declaration
+L=(6) //m
+w=(60) //uniformly distributed load,KN/m
+Rs=L*w/2 //Reaction at support,KN
+
+//Moment at 1.5 m from support
+M =( Rs*1.5-(w*(1.5**2)/2))
+//Shear force at 1.5 m from support
+F=Rs-1.5*w
+
+B=(200) //width of I-beam,mm
+H=(400) //height or I-beam,mm
+b=(190)
+h=(380)
+I= (B*(H**3)/12)-(b*(h**3)/12)
+
+//Bending stress at 100 mm above N–A
+y=100
+
+f=M*1000000*y/I
+
+//Thus the state of stress on an element at y = 100 mm, as px = f,py=0
+px=-f
+py=0
+A=200*10*195+10*90*145
+q=(F*1000*(A))/(10*I) //shearing stress,N/mm^2
+
+p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2))
+p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2))
+printf("\n p1= %0.2f N/mm^2",p1)
+printf("\n p2= %0.2f N/mm^2",p2)
+
+
+qmax=sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n qmax= %0.2f N/mm^2",qmax)
diff --git a/3862/CH11/EX11.2/Ex11_2.sce b/3862/CH11/EX11.2/Ex11_2.sce
new file mode 100644
index 000000000..93cae8d59
--- /dev/null
+++ b/3862/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,52 @@
+clear
+//
+
+//A material has strength in tension, compression and shear as 30N/mm2, 90 N/mm2 and 25 N/mm2, respectively. If a specimen of diameter 25 mm is tested in tension and compression identity the failure surfaces and loads.
+
+//variable declaration
+
+//In tension: Let axial direction be x direction. Since it is uniaxial loading, py = 0, q = 0 and only px exists.when the material is subjected to full tensile stress, px = 30 N/mm^2.
+
+pt=(30)
+pc=(90)
+ps=(25)
+
+d=(25)
+px=(30) //N/mm^2
+py=0
+q=0
+p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2))
+
+p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2))
+
+qmax=(px-py)/2
+
+//Hence failure criteria is normal stress p1
+
+A=%pi*(d**2)/4
+
+//Corresponding load P is obtained by
+p=p1
+P=p1*A
+
+printf("\n (a) P= %0.2f N",P)
+
+//In case of compression test,
+
+px=-pc
+
+P=-px*A
+
+printf("\n (b) P= %0.2f N compressive",(-P))
+
+//at this stage
+
+qmax=sqrt((((px-py)/2**2))+(q**2))
+
+printf("\n Material fails because of maximum shear and not by axial compression.")
+qmax=25
+px=2*qmax
+
+P=px*A
+printf("\n P= %0.0f N",P)
+printf("\n The plane of qmax is at 45° to the plane of px. ")
diff --git a/3862/CH11/EX11.3/Ex11_3.sce b/3862/CH11/EX11.3/Ex11_3.sce
new file mode 100644
index 000000000..9ebd4586b
--- /dev/null
+++ b/3862/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,26 @@
+clear
+//The direct stresses at a point in the strained material are 120 N/mm2 compressive and 80 N/mm2 tensile. There is no shear stress.
+
+//
+//variable declaration
+
+//The plane AC makes 30° (anticlockwise) to the plane of px (y-axis). Hence theta= 30°. px = 80 N/mm^2 py = – 120 N/mm^2 ,q = 0
+
+px=(80)
+py=(-120)
+q=(0)
+theta=30
+pn=((px+py)/2)+((px-py)/2)*cos(2*theta*%pi/180)+q*sin(2*theta*%pi/180)
+
+printf("\n pn= %0.0f N/mm^2",pn)
+
+pt=((px-py)/2)*sin(2*theta*%pi/180)-q*cos(2*theta*%pi/180)
+
+printf("\n pt= %0.1f N/mm^2",pt)
+p=sqrt((pn**2)+(pt**2))
+
+printf("\n p= %0.2f N/mm^2",p)
+
+alpha=atan(pn/pt)*180/%pi
+
+printf("\n alpha= %0.1f °",alpha)
diff --git a/3862/CH11/EX11.4/Ex11_4.sce b/3862/CH11/EX11.4/Ex11_4.sce
new file mode 100644
index 000000000..fdc03672c
--- /dev/null
+++ b/3862/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,24 @@
+clear
+//
+//variable declaration
+//Let the principal plane make anticlockwise angle theta with the plane of px with y-axis. Then
+
+px=(200) //N/mm^2
+py=(150) //N/mm^2
+q=(100) //N/mm^2
+
+theta1=(atan((2*q)/(px-py))*180)/(%pi*2)
+theta2=90+theta1
+printf("\n theta= %0.2f ° and %0.2f °",theta1,theta2)
+
+p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n p1= %0.2f N/mm^2",p1)
+
+p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n p2= %0.2f N/mm^2",p2)
+
+qmax=sqrt((((px-py)/2**2))+(q**2))
+
+printf("\n qmax= %0.2f N/mm^2",qmax)
diff --git a/3862/CH11/EX11.6/Ex11_6.sce b/3862/CH11/EX11.6/Ex11_6.sce
new file mode 100644
index 000000000..04a7891f6
--- /dev/null
+++ b/3862/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,28 @@
+clear
+//
+//variable declaration
+//Let the principal plane make anticlockwise angle theta with the plane of px with y-axis. Then
+
+px=(-100) //N/mm^2
+py=(-75) //N/mm^2
+q=(-50) //N/mm^2
+
+
+p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n p1= %0.2f N/mm^2",p1)
+
+p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n p2= %0.2f N/mm^2",p2)
+
+qmax=sqrt((((px-py)/2**2))+(q**2))
+
+printf("\n qmax= %0.2f N/mm^2",qmax)
+
+//let theta be the inclination of principal stress to the plane of px.
+
+
+theta1=(atan((2*q)/(px-py))*180)/(%pi*2)
+theta2=90+theta1
+printf("\n theta= %0.2f ° and %0.2f °",theta1,theta2)
diff --git a/3862/CH11/EX11.7/Ex11_7.sce b/3862/CH11/EX11.7/Ex11_7.sce
new file mode 100644
index 000000000..7faeff669
--- /dev/null
+++ b/3862/CH11/EX11.7/Ex11_7.sce
@@ -0,0 +1,53 @@
+clear
+//
+//variable declaration
+//Let the principal plane make anticlockwise angle theta with the plane of px with y-axis. Then
+
+px=(-50) //N/mm^2
+py=(100) //N/mm^2
+q=(75) //N/mm^2
+
+
+p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n (i) p1= %0.2f N/mm^2",p1)
+
+p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2))
+
+printf("\n p2= %0.2f N/mm^2",p2)
+
+qmax=sqrt((((px-py)/2**2))+(q**2))
+
+printf("\n (ii) qmax= %0.2f N/mm^2",qmax)
+
+//let theta be the inclination of principal stress to the plane of px.
+
+
+theta1=(atan((2*q)/(px-py))*180)/(%pi*2)
+
+printf("\n theta= %0.2f ° clockwise",theta1)
+
+//Plane of maximum shear makes 45° to it
+
+theta2=theta1+45
+printf("\n theta2= %0.2f °",theta2)
+
+//Normal stress on this plane is given by
+
+pn=((px+py)/2)+((px-py)/2)*cos(2*theta2*%pi/180)+q*sin(2*theta2*%pi/180)
+
+pt=qmax
+
+//Resultant stress
+p=sqrt((pn**2)+(pt**2))
+
+printf("\n p= %0.2f N/mm^2",p)
+
+//Let ‘p’ make angle phi to tangential stress (maximum shear stress plane).
+
+phi=atan(pn/pt)*180/%pi
+
+printf("\n phi= %0.1f °",phi)
+
+//there is mistake in book
+printf("\n mitake in book answer is wrong")
diff --git a/3862/CH11/EX11.9/Ex11_9.sce b/3862/CH11/EX11.9/Ex11_9.sce
new file mode 100644
index 000000000..e783ab20c
--- /dev/null
+++ b/3862/CH11/EX11.9/Ex11_9.sce
@@ -0,0 +1,29 @@
+clear
+//
+
+//variable declaration
+
+w=(100) //wide of rectangular beam,mm
+h=(200) //height or rectangular beam dude,mm
+
+I=w*(h**3)/12
+
+//At point A, which is at 30 mm below top fibre
+y=100-30
+M=(80*1000000) //sagging moment,KN-m
+
+fx=M*y/I
+
+px=-fx
+F=(100*1000 ) //shear force,N
+b=(100)
+A=b*30
+y1=100-15
+
+q=(F*(A*y1))/(b*I) //shearing stress,N/mm^2
+
+py=0
+p1=(px+py)/2+sqrt((((px-py)/2)**2)+(q**2))
+p2=(px+py)/2-sqrt((((px-py)/2)**2)+(q**2))
+printf("\n p1= %0.2f N/mm^2",p1)
+printf("\n p2= %0.2f N/mm^2",p2)