summaryrefslogtreecommitdiff
path: root/3856/CH9
diff options
context:
space:
mode:
Diffstat (limited to '3856/CH9')
-rw-r--r--3856/CH9/EX9.1/Ex9_1.sce23
-rw-r--r--3856/CH9/EX9.1/Ex9_1.txt1
-rw-r--r--3856/CH9/EX9.2/Ex9_2.sce27
-rw-r--r--3856/CH9/EX9.2/Ex9_2.txt1
-rw-r--r--3856/CH9/EX9.3/Ex9_3.sce24
-rw-r--r--3856/CH9/EX9.3/Ex9_3.txt1
-rw-r--r--3856/CH9/EX9.4/Ex9_4.jpgbin0 -> 30294 bytes
-rw-r--r--3856/CH9/EX9.4/Ex9_4.sce39
-rw-r--r--3856/CH9/EX9.4/Ex9_4.txt2
-rw-r--r--3856/CH9/EX9.5/Ex9_5.sce41
-rw-r--r--3856/CH9/EX9.5/Ex9_5.txt5
11 files changed, 164 insertions, 0 deletions
diff --git a/3856/CH9/EX9.1/Ex9_1.sce b/3856/CH9/EX9.1/Ex9_1.sce
new file mode 100644
index 000000000..8bb599e35
--- /dev/null
+++ b/3856/CH9/EX9.1/Ex9_1.sce
@@ -0,0 +1,23 @@
+//Calculate the Equilibrium constant for the reaction N2(g)+3H2(g)=2NH3(g)
+
+//Example 9.1
+
+clc;
+
+clear;
+
+delfG1=-16.6; //Standard Gibbs Energy for NH3 in kJ mol^-1
+
+delfG2=0; //Standard Gibbs Energy for N2 in kJ mol^-1
+
+delfG3=0; //Standard Gibbs Energy for NH3 in kJ mol^-1
+
+delrGo=2*delfG1-(delfG2+3*delfG3); //Standard Gibbs Energy change for reaction in kJ mol^-1
+
+R=8.314; //Gas constant in J K^-1 mol^-1
+
+T=298; //Temperature in K
+
+Kp=exp(-delrGo*1000/(R*T)); //Equilibrium constant for the reaction (Equilibrium constant for the reaction is given by Kp=(PNH3/Pdeg)^2/((PN2/Pdeg)*(PH2/Pdeg)^2 )
+
+printf("Equilibrium constant = %.1f*10^5",Kp*10^-5);
diff --git a/3856/CH9/EX9.1/Ex9_1.txt b/3856/CH9/EX9.1/Ex9_1.txt
new file mode 100644
index 000000000..0255f56ce
--- /dev/null
+++ b/3856/CH9/EX9.1/Ex9_1.txt
@@ -0,0 +1 @@
+ Equilibrium constant = 6.6*10^5 \ No newline at end of file
diff --git a/3856/CH9/EX9.2/Ex9_2.sce b/3856/CH9/EX9.2/Ex9_2.sce
new file mode 100644
index 000000000..797b13956
--- /dev/null
+++ b/3856/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,27 @@
+//Calculate the Standard Gibbs Energy change for the reaction (delrG) N2(g)+3H2(g)=2NH3(g)
+
+//Example 9.2
+
+clc;
+
+clear;
+
+Po=(760*10^5)/(1.01325*10^5); //Standard pressure of the gas in torr
+
+PN2=190; //Partial pressure of the N2 gas in torr
+
+PH2=418; //Partial pressure of the H2 gas in torr
+
+PNH3=722; //Partial pressure of the NH3 gas in torr
+
+Kp=((PNH3/Po)^2)/((PN2/Po)*(PH2/Po)^3); //Equilibrium constant for reaction
+
+R=8.314; //Gas constant in J K^-1 mol^-1
+
+T=298; //Temperature of the gas in K
+
+delrGo=-33.2*10^3; //Standard Gibbs energy for the reaction J mol^-1
+
+delrG=(delrGo+(R*T)*log(Kp))/1000; //Standard Gibbs Energy change for the reaction in kJ mol^-1
+
+printf("Standard Gibbs Energy Change = %.1f kJ mol^-1",delrG);
diff --git a/3856/CH9/EX9.2/Ex9_2.txt b/3856/CH9/EX9.2/Ex9_2.txt
new file mode 100644
index 000000000..866008744
--- /dev/null
+++ b/3856/CH9/EX9.2/Ex9_2.txt
@@ -0,0 +1 @@
+ Standard Gibbs Energy Change = -25.6 kJ mol^-1 \ No newline at end of file
diff --git a/3856/CH9/EX9.3/Ex9_3.sce b/3856/CH9/EX9.3/Ex9_3.sce
new file mode 100644
index 000000000..b95eb85a2
--- /dev/null
+++ b/3856/CH9/EX9.3/Ex9_3.sce
@@ -0,0 +1,24 @@
+//Calculate the Equilibrium constant for the reaction 2H2(g)+O2(g)=2H2O(l)
+
+//Example 9.3
+
+clc;
+
+clear;
+
+delG1=-237.2; //Standard Gibbs enaergy for H2O in kJ mol^-1
+
+delG2=0; //Standard Gibbs enaergy for H2 in kJ mol^-1
+
+delG3=0; //Standard Gibbs enaergy for O2 in kJ mol^-1
+
+delG=2*delG1-2*delG2-delG3; //Standard Gibbs enaergy change for the reaction in kJ mol^-1
+
+R=8.314; //Gas constant in J K^-1 mol^-1
+
+T=298; //Temperature in K
+
+Kp=exp(-(delG*1000)/(R*T)); //Equilibrium constant
+
+printf("Equilibrium constant = %.1f*10^83",Kp*10^-83);
+
diff --git a/3856/CH9/EX9.3/Ex9_3.txt b/3856/CH9/EX9.3/Ex9_3.txt
new file mode 100644
index 000000000..f33b62a10
--- /dev/null
+++ b/3856/CH9/EX9.3/Ex9_3.txt
@@ -0,0 +1 @@
+ Equilibrium constant = 1.4*10^83 \ No newline at end of file
diff --git a/3856/CH9/EX9.4/Ex9_4.jpg b/3856/CH9/EX9.4/Ex9_4.jpg
new file mode 100644
index 000000000..0b829f9ed
--- /dev/null
+++ b/3856/CH9/EX9.4/Ex9_4.jpg
Binary files differ
diff --git a/3856/CH9/EX9.4/Ex9_4.sce b/3856/CH9/EX9.4/Ex9_4.sce
new file mode 100644
index 000000000..fe670d1ae
--- /dev/null
+++ b/3856/CH9/EX9.4/Ex9_4.sce
@@ -0,0 +1,39 @@
+//To calculate the values of Enthalpy and Entropy of Reaction
+
+//Example 9.4
+
+clc;
+
+clear;
+
+T=[872,973,1073,1173];//Temperatures in Kelvin
+
+Kp=[1.8*10^-4,1.8*10^-3,1.08*10^-2,0.0480];//Equilibrium Constant
+
+for i=1:4
+ x(i)=1/T(i);//Defining x-axis of the graph as x=1/T
+end
+
+for i=1:4
+ y(i)=log(Kp(i));//Defining y-axis of the graph as y=log(Kp)
+end
+
+plot(x,y);//Plotting the Graph between 1/T and log(Kp)
+
+xlabel("K/T", "fontsize", 2);//Putting the x-axis as K/T
+
+ylabel("ln(Kp)", "fontsize", 2);//Putting the y-axis as ln(Kp)
+
+m=-(y(2)-y(1))/(x(2)-x(1));//Slope of the Graph
+
+R=8.314;//Universal Gas Constant in J K^-1 mol^-1
+
+delH=R*m/1000;//Change in Enthalpy in kJ mol^-1
+
+c=12.954;//y-Intercept of the Graph
+
+delS=R*c;//Change in Entropy in J K^-1 mol^-1
+
+printf("Change in Enthalpy of reaction = %.2f*10^2 kJ mol^-1",delH*10^-2);
+
+printf("\n Entropy Change for the reaction = %.0f J K^-1 mol^-1",delS)
diff --git a/3856/CH9/EX9.4/Ex9_4.txt b/3856/CH9/EX9.4/Ex9_4.txt
new file mode 100644
index 000000000..7a7033ecd
--- /dev/null
+++ b/3856/CH9/EX9.4/Ex9_4.txt
@@ -0,0 +1,2 @@
+ Change in Enthalpy of reaction = 1.61*10^2 kJ mol^-1
+ Entropy Change for the reaction = 108 J K^-1 mol^-1 \ No newline at end of file
diff --git a/3856/CH9/EX9.5/Ex9_5.sce b/3856/CH9/EX9.5/Ex9_5.sce
new file mode 100644
index 000000000..f2767ee81
--- /dev/null
+++ b/3856/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,41 @@
+//Calculate the values of change in Gibbs energy and Equilibrium constant in biocchemical processes, Equilibrium constant for standard state .Also calculate the Gibbs energy change using both physical chemical standard state and biochemical standard state
+
+//Example 9.5
+
+clc;
+
+clear;
+
+R=8.314; //Gas constant in J K^-1 mol^-1
+
+T=298; //Temperature in K
+
+delG1=-21.8; //Change in Gibbs energy in standard state in kJ mol^-1
+
+K=exp((-delG1*1000)/(R*T)); //Equilibrium constant for standard state
+
+printf("Equilibrium constant for standard = %.1f*10^3",K*10^-3);
+
+delG2=delG1+39.93; //Change in Gibbs energy in biocchemical processes in kJ mol^-1
+
+printf("\n Change in Gibbs energy in biocchemical processes =%.2f kJ mol^-1 ",delG2);
+
+Kdes=exp(-(delG2*1000)/(R*T)); //Equilibrium constant in biocchemical processes
+
+printf("\n Equilibrium constant in biocchemical processes = %.1f*10^-4",Kdes*10^4);
+
+C1=4.6*10^-3; //Concentration of NAD+ ion in M
+
+C2=1.5*10^-2; //Concentration of NADH in M
+
+C3=3.0*10^-5; //Concentration of H+ ion in M
+
+PH2=0.010; //Standard pressure of H2 gas in bar
+
+DelG1=((delG1*1000)+(R*T)*(log((C1*PH2)/(C2*C3))))/1000; //Gibbs energy change for Physical Chemical standard state in kJ mol^-1
+
+printf("\n Gibbs energy change for Physical Chemical standard state = %.1f kJ mol^-1 ",DelG1);
+
+DelG2=((delG2*1000)+(R*T)*(log((C1*PH2)/(C2*C3/10^-7))))/1000; //Gibbs energy change for Biochemists's Standard state in kJ mol^-1
+
+printf("\n Gibbs energy change for Biochemists Standard state = %.1f kJ mol^-1",DelG2);
diff --git a/3856/CH9/EX9.5/Ex9_5.txt b/3856/CH9/EX9.5/Ex9_5.txt
new file mode 100644
index 000000000..372e20919
--- /dev/null
+++ b/3856/CH9/EX9.5/Ex9_5.txt
@@ -0,0 +1,5 @@
+ Equilibrium constant for standard = 6.6*10^3
+ Change in Gibbs energy in biocchemical processes =18.13 kJ mol^-1
+ Equilibrium constant in biocchemical processes = 6.6*10^-4
+ Gibbs energy change for Physical Chemical standard state = -10.3 kJ mol^-1
+ Gibbs energy change for Biochemists Standard state = -10.3 kJ mol^-1 \ No newline at end of file