diff options
Diffstat (limited to '3845/CH25')
-rw-r--r-- | 3845/CH25/EX25.1/Ex25_1.sce | 7 | ||||
-rw-r--r-- | 3845/CH25/EX25.10/Ex25_10.sce | 19 | ||||
-rw-r--r-- | 3845/CH25/EX25.11/Ex25_11.sce | 10 | ||||
-rw-r--r-- | 3845/CH25/EX25.2/Ex25_2.sce | 8 | ||||
-rw-r--r-- | 3845/CH25/EX25.3/Ex25_3.sce | 8 | ||||
-rw-r--r-- | 3845/CH25/EX25.4/Ex25_4.sce | 7 | ||||
-rw-r--r-- | 3845/CH25/EX25.5/Ex25_5.sce | 6 | ||||
-rw-r--r-- | 3845/CH25/EX25.6/Ex25_6.sce | 19 | ||||
-rw-r--r-- | 3845/CH25/EX25.7/Ex25_7.sce | 8 | ||||
-rw-r--r-- | 3845/CH25/EX25.8/Ex25_8.sce | 8 | ||||
-rw-r--r-- | 3845/CH25/EX25.9/Ex25_9.sce | 9 |
11 files changed, 109 insertions, 0 deletions
diff --git a/3845/CH25/EX25.1/Ex25_1.sce b/3845/CH25/EX25.1/Ex25_1.sce new file mode 100644 index 000000000..a8f15979a --- /dev/null +++ b/3845/CH25/EX25.1/Ex25_1.sce @@ -0,0 +1,7 @@ +//Example 25.1
+c=3*10^8;//Speed of light (m/s)
+n=1.923;//Index of refraction for zircon, See Table 25.1
+v=c/n;//Speed of light in zircon (m/s)
+printf('Speed of light in zircon = %0.2e m/s',v)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.10/Ex25_10.sce b/3845/CH25/EX25.10/Ex25_10.sce new file mode 100644 index 000000000..e3d788e03 --- /dev/null +++ b/3845/CH25/EX25.10/Ex25_10.sce @@ -0,0 +1,19 @@ +//Example 25.10
+f=40;//Focal length (cm)
+R=2*f;//Radius of curvature (cm)
+printf('a.Radius of curvature = %0.1f cm',R)
+L=1;//Length (m)
+A=(1/4)*2*%pi*(R*10^-2)*L;//Area of the concave mirror of length L (m^2)
+i=900;//Insolation (W/m^2)
+Q=i*A;//Insolation per meter length of pipe (W)
+printf('\nb.Amount of sunlight concentrated onto the pipe per meter = %0.1f W',Q)
+rho=8*10^2;//Density of mineral oil (kg/m^3)
+d=2*10^-2;//Pipe diameter (m)
+V=%pi*(d/2)^2*1;//Volume of 1m long section of pipe (m^3)
+m=rho*V;//Mass of mineral oil (kg)
+c=1670;//Specific heat of mineral oil (J/kg.C)
+delta_T=Q*60/(m*c);//Increase in temperature over 1 minute (C)
+printf('\nc.Increase in temperature = %0.1f C',delta_T)
+//Answers vary due to round off errors
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.11/Ex25_11.sce b/3845/CH25/EX25.11/Ex25_11.sce new file mode 100644 index 000000000..e9e8e44eb --- /dev/null +++ b/3845/CH25/EX25.11/Ex25_11.sce @@ -0,0 +1,10 @@ +//Example 25.11
+d_o=12;//Object distance (cm)
+m=0.0320;//Magnification
+d_i=-m*d_o;//Image distance (cm)
+f=1/(1/d_o+1/d_i);//Focal length (cm)
+R=2*abs(f);//Radius of curvature (cm)
+printf('Radius of curvature of cornea = %0.3f cm',R)
+//Answer varies due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.2/Ex25_2.sce b/3845/CH25/EX25.2/Ex25_2.sce new file mode 100644 index 000000000..b1c77ec0f --- /dev/null +++ b/3845/CH25/EX25.2/Ex25_2.sce @@ -0,0 +1,8 @@ +//Example 25.2
+n1=1;//Index of refraction for air
+theta1=30;//Incident angle (deg)
+theta2=22;//Angle of refraction (deg)
+n2=n1*sind(theta1)/sind(theta2);//Index of refraction for medium 2
+printf('Index of refraction for medium 2 = %0.2f',n2)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.3/Ex25_3.sce b/3845/CH25/EX25.3/Ex25_3.sce new file mode 100644 index 000000000..e74eddf9f --- /dev/null +++ b/3845/CH25/EX25.3/Ex25_3.sce @@ -0,0 +1,8 @@ +//Example 25.3
+n1=1;//Index of refraction for air
+n2=2.419;//Index of refraction for diamond, See Table 25.1
+theta1=30;//Incident angle (deg)
+theta2=asind(n1*sind(theta1)/n2);//Angle of refraction (deg)
+printf('Angle of refraction = %0.1f deg',theta2)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.4/Ex25_4.sce b/3845/CH25/EX25.4/Ex25_4.sce new file mode 100644 index 000000000..b4a0df6b5 --- /dev/null +++ b/3845/CH25/EX25.4/Ex25_4.sce @@ -0,0 +1,7 @@ +//Example 25.4
+n1=1.49;//Index of refraction for polystyrene, See Table 25.1
+n2=1;//Index of refraction for air,
+theta_c=asind(n2/n1);//Critical angle (deg)
+printf('Critical angle = %0.1f deg',theta_c)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.5/Ex25_5.sce b/3845/CH25/EX25.5/Ex25_5.sce new file mode 100644 index 000000000..22d435a01 --- /dev/null +++ b/3845/CH25/EX25.5/Ex25_5.sce @@ -0,0 +1,6 @@ +//Example 25.5
+f=8*10^-2;//Focal length (m)
+P=1/f;//Power of the lens (D)
+printf('Power of the lens = %0.1f D',P)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.6/Ex25_6.sce b/3845/CH25/EX25.6/Ex25_6.sce new file mode 100644 index 000000000..3100ed7e3 --- /dev/null +++ b/3845/CH25/EX25.6/Ex25_6.sce @@ -0,0 +1,19 @@ +//Example 25.6
+//Using ray tracing, image distance, d_i, is found to be about 1.50m and magnification, m, to be about -2.
+d_i_rt=1.50;//Image distance from ray tracing (m)
+printf('Image distance found using ray tracing = %0.2f m',d_i_rt)
+m_rt=-2;//Magnification from ray tracing
+printf('\nMagnification found using ray tracing = %0.0f',m_rt)
+d_o=0.75;//Object distance (m)
+f=0.5;//Focal length (m)
+d_i=f*d_o/(d_o-f);//Image distance by rearranging thin lens equation (m)
+printf('\n\nImage distance found using thin lens equation = %0.2f m',d_i)
+m=-d_i/d_o;//Magnification
+printf('\nMagnification found using thin lens equation = %0.2f',m)
+if d_i_rt==d_i&m_rt==m
+ printf('\n\nThin lens equation and ray tracing results are consistent')
+else
+ printf('\n\nThin lens equation and ray tracing results are not consistent')
+end
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.7/Ex25_7.sce b/3845/CH25/EX25.7/Ex25_7.sce new file mode 100644 index 000000000..926ad1d41 --- /dev/null +++ b/3845/CH25/EX25.7/Ex25_7.sce @@ -0,0 +1,8 @@ +//Example 25.7
+d_o=7.5*10^-2;//Object distance (m)
+f=10*10^-2;//Focal distance (m)
+d_i=1/(1/f-1/d_o);//Image distance (m)
+m=-d_i/d_o;//Magnification
+printf('Magnification produced by magnifying glass = %0.2f',m)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.8/Ex25_8.sce b/3845/CH25/EX25.8/Ex25_8.sce new file mode 100644 index 000000000..f79441888 --- /dev/null +++ b/3845/CH25/EX25.8/Ex25_8.sce @@ -0,0 +1,8 @@ +//Example 25.8
+d_o=7.5*10^-2;//Object distance (m)
+f=-10*10^-2;//Focal distance (m)
+d_i=1/(1/f-1/d_o);//Image distance (m)
+m=-d_i/d_o;//Magnification
+printf('Magnification produced by concave lens = %0.3f',m)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH25/EX25.9/Ex25_9.sce b/3845/CH25/EX25.9/Ex25_9.sce new file mode 100644 index 000000000..565a192b7 --- /dev/null +++ b/3845/CH25/EX25.9/Ex25_9.sce @@ -0,0 +1,9 @@ +//Example 25.9
+d_i=3*10^2;//Image distance (cm)
+R=50;//Radius of curvature of mirror (cm)
+f=R/2;//Focal length of concave mirror (cm)
+d_o=1/(1/f-1/d_i);//Object distance (cm)
+printf('Distance of the coils from the concave mirror = %0.1f cm',d_o)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
+
|