summaryrefslogtreecommitdiff
path: root/3845/CH21
diff options
context:
space:
mode:
Diffstat (limited to '3845/CH21')
-rw-r--r--3845/CH21/EX21.1/Ex21_1.sce40
-rw-r--r--3845/CH21/EX21.2/Ex21_2.sce42
-rw-r--r--3845/CH21/EX21.3/Ex21_3.sce18
-rw-r--r--3845/CH21/EX21.4/Ex21_4.sce25
-rw-r--r--3845/CH21/EX21.5/Ex21_5.sce22
-rw-r--r--3845/CH21/EX21.6/Ex21_6.sce10
-rw-r--r--3845/CH21/EX21.7/Ex21_7.sce16
7 files changed, 173 insertions, 0 deletions
diff --git a/3845/CH21/EX21.1/Ex21_1.sce b/3845/CH21/EX21.1/Ex21_1.sce
new file mode 100644
index 000000000..f3d1490da
--- /dev/null
+++ b/3845/CH21/EX21.1/Ex21_1.sce
@@ -0,0 +1,40 @@
+//Example 21.1
+R1=1;//Resistance of resistor 1 (ohm)
+R2=6;//Resistance of resistor 2 (ohm)
+R3=13;//Resistance of resistor 3 (ohm)
+R_s=R1+R2+R3;//Equivalent resistance for series combination (ohm)
+printf('a.Total resistance = %0.1f ohm',R_s)
+
+V=12;//Voltage (V)
+I=V/R_s;//Current (A)
+printf('\nb.Current = %0.3f A',I)
+
+V1=I*R1;//Voltage drop in resistor 1 (V)
+printf('\nc.Voltage drop in resistor 1 = %0.3f V',V1)
+V2=I*R2;//Voltage drop in resistor 2 (V)
+printf('\n Voltage drop in resistor 2 = %0.2f V',V2)
+V3=I*R3;//Voltage drop in resistor 3 (V)
+printf('\n Voltage drop in resistor 3 = %0.2f V',V3)
+printf('\nDiscussion:\n Sum of voltage drops across resistors = %0.1f V',V1+V2+V3)
+if (V1+V2+V3)==V
+ printf('\n It is equal to the voltage output of the source')
+else
+ printf('\n It is not equal to the voltage output of the source')
+end
+
+P1=I^2*R1;//Power dissipated in resistor 1 (W)
+printf('\nd.Power dissipated in resistor 1 = %0.3f W',P1)
+P2=I^2*R2;//Power dissipated in resistor 2 (W)
+printf('\n Power dissipated in resistor 2 = %0.2f W',P2)
+P3=I^2*R3;//Power dissipated in resistor 3 (W)
+printf('\n Power dissipated in resistor 3 = %0.2f W',P3)
+
+P=I*V;//Power output of source (W)
+printf('\ne.Power output of source = %0.2f W',P)
+if (P1+P2+P3)==P
+ printf('\nDiscussion:\nIt is equal to the total power dissipated by the resistors, (P1+P2+P3)')
+else
+ printf('\nDiscussion:\nIt is not equal to the total power dissipated by the resistors, (P1+P2+P3)')
+end
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH21/EX21.2/Ex21_2.sce b/3845/CH21/EX21.2/Ex21_2.sce
new file mode 100644
index 000000000..7f1eed921
--- /dev/null
+++ b/3845/CH21/EX21.2/Ex21_2.sce
@@ -0,0 +1,42 @@
+//Example 21.2
+R1=1;//Resistance of resistor 1 (ohm)
+R2=6;//Resistance of resistor 2 (ohm)
+R3=13;//Resistance of resistor 3 (ohm)
+R_p=1/(1/R1+1/R2+1/R3);//Equivalent resistance for parallel combination (ohm)
+printf('a.Total resistance = %0.3f ohm',R_p)
+
+V=12;//Voltage (V)
+I=V/R_p;//Current (A)
+printf('\nb.Current = %0.2f A',I)
+
+I1=V/R1;//Current through resistor 1 (A)
+printf('\nc.Current through resistor 1 = %0.1f A',I1)
+I2=V/R2;//Current through resistor 2 (A)
+printf('\n Current through resistor 2 = %0.2f A',I2)
+I3=V/R3;//Current through resistor 3 (A)
+printf('\n Current through resistor 3 = %0.2f A',I3)
+printf('\nDiscussion:\n Total current = %0.2f A',I1+I2+I3)
+if (I1+I2+I3)==I
+ printf('\n It is equal to the current output of the source')
+else
+ printf('\n It is not equal to the current output of the source')
+end
+
+P1=V^2/R1;//Power dissipated in resistor 1 (W)
+printf('\nd.Power dissipated in resistor 1 = %0.1f W',P1)
+P2=V^2/R2;//Power dissipated in resistor 2 (W)
+printf('\n Power dissipated in resistor 2 = %0.1f W',P2)
+P3=V^2/R3;//Power dissipated in resistor 3 (W)
+printf('\n Power dissipated in resistor 3 = %0.1f W',P3)
+
+P=I*V;//Power output of source (W)
+printf('\ne.Power output of source = %0.1f W',P)
+if abs((P1+P2+P3)-P)<0.1
+ printf('\nDiscussion:\nIt is equal to the total power dissipated by the resistors, (P1+P2+P3)')
+else
+ printf('\nDiscussion:\nIt is not equal to the total power dissipated by the resistors, (P1+P2+P3)')
+end
+//Disregarding a variation of less than 0.1W for sub-question(e)
+//Answer varies due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH21/EX21.3/Ex21_3.sce b/3845/CH21/EX21.3/Ex21_3.sce
new file mode 100644
index 000000000..3e878567c
--- /dev/null
+++ b/3845/CH21/EX21.3/Ex21_3.sce
@@ -0,0 +1,18 @@
+//Example 21.3
+R1=1;//Resistance of resistor 1 (ohm)
+R2=6;//Resistance of resistor 2 (ohm)
+R3=13;//Resistance of resistor 3 (ohm)
+R_p=1/(1/R2+1/R3);//Equivalent resistance for parallel combination (ohm)
+R_tot=R1+R_p;//Total resistance (ohm)
+printf('a.Total resistance = %0.2f ohm',R_tot)
+V=12;//Voltage (V)
+I=V/R_tot;//Total current (A)
+V1=I*R1;//Voltage drop in resistor R1 (V)
+printf('\nb.Voltage drop in R1 = %0.2f V',V1)
+V_p=V-V1;//Voltage across parallel combination (V)
+I2=V_p/R2;//Current through resistor 2 (A)
+printf('\nc.Current through R2 = %0.2f A',I2)
+P2=I2^2*R2;//Power dissipated by resistor 2 (W)
+printf('\nd.Power dissipated by R2 = %0.1f W',P2)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH21/EX21.4/Ex21_4.sce b/3845/CH21/EX21.4/Ex21_4.sce
new file mode 100644
index 000000000..0e69e173f
--- /dev/null
+++ b/3845/CH21/EX21.4/Ex21_4.sce
@@ -0,0 +1,25 @@
+//Example 21.4
+emf=12;//Emf of battery (V)
+r=0.1;//Internal resistance (ohm)
+R_load=10;//Load resistance (ohm)
+I=emf/(R_load+r);//Current (A)
+V=emf-I*r;//Terminal voltage (V)
+printf('a.Terminal voltage = %0.1f V',V)
+
+R_load=0.5;//Load resistance (ohm)
+I=emf/(R_load+r);//Current (A)
+V=emf-I*r;//Terminal voltage (V)
+printf('\nb.Terminal voltage = %0.1f V',V)
+
+P_load=I^2*R_load;//Power dissipated (W)
+printf('\nc.Power dissipated by the load = %0.2e W',P_load)
+
+r=0.5;//Internal resistance (ohm)
+I=emf/(R_load+r);//Current (A)
+printf('\nd.Current = %0.1f A',I)
+V=emf-I*r;//Terminal voltage (V)
+printf('\n Terminal voltage = %0.2f V',V)
+P_load=I^2*R_load;//Power dissipated (W)
+printf('\n Power dissipated by the load = %0.1f W',P_load)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH21/EX21.5/Ex21_5.sce b/3845/CH21/EX21.5/Ex21_5.sce
new file mode 100644
index 000000000..31e550e9b
--- /dev/null
+++ b/3845/CH21/EX21.5/Ex21_5.sce
@@ -0,0 +1,22 @@
+//Example 25.1
+R1=6;//Resistance (ohm)
+R2=2.5;//Resistance (ohm)
+R3=1.5;//Resistance (ohm)
+r1=0.5;//Internal resistance (ohm)
+r2=0.5;//Internal resistance (ohm)
+emf1=18;//Emf 1 (V)
+emf2=45;//Emf 2 (V)
+//A set of three equations are required since there are three unknowns-currents I1,I2 and I3
+//Equation 1: I1=I2+I3 (Using Kirchoff's junction rule, See Equation 21.54)
+//Equation 2: -I1*R1-I2*(R2+r1)=-emf1 (Using Kirchoff's loop rule in loop abcdea and rearranging, See Equation 21.55)
+//Equation 3: I1*R1+I3*(R3+r2)=emf2 (Using Kirchoff's loop rule in loop aefgha and rearranging, See Equation 21.57)
+A=[1 -1 -1;-R1 -(R2+r1) 0;R1 0 (R3+r2)];//Matrix containing coefficients of variables
+C=[0 -emf1 emf2]';//Matrix containing constants
+//Equation is of the form A*B=C, therefore
+B=inv(A)*C;//To compute values of variables
+//we use the form A*B=C
+for i=1:1:3
+ printf('Current I%d = %0.2f A\n',i,B(i,1))
+end
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH21/EX21.6/Ex21_6.sce b/3845/CH21/EX21.6/Ex21_6.sce
new file mode 100644
index 000000000..46584c54e
--- /dev/null
+++ b/3845/CH21/EX21.6/Ex21_6.sce
@@ -0,0 +1,10 @@
+//Example 21.6
+v=5*10^2;//Velocity of bullet (m/s)
+x=8*10^-2;//Distance traversed (m)
+t=x/v;//Time (s)
+tau=t;//Time constant (s)
+R=10;//Resistance (ohm)
+C=tau/R;//Capacitance (F)
+printf('Capacitance required = %0.1f microF',C/10^-6)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH21/EX21.7/Ex21_7.sce b/3845/CH21/EX21.7/Ex21_7.sce
new file mode 100644
index 000000000..fcaa73b19
--- /dev/null
+++ b/3845/CH21/EX21.7/Ex21_7.sce
@@ -0,0 +1,16 @@
+//Example 21.7
+R=1*10^3;//Resistance (ohm)
+C=8*10^-6;//Capacitance (F)
+tau=R*C;//Time constant (s)
+printf('a.Time constant tau = %0.2f ms',tau*1000)
+V_0=10*10^3;//Intial voltage (V)
+V_f=5*10^2;//Final voltage (V)
+V=0.368*V_0;//Voltage falls to 0.368 of V_0 after 8ms (V)
+T=8*10^-3;//Time (s)
+while V>V_f
+ V=0.368*V;
+ T=T+8*10^-3;
+end//To find the time taken for voltage to decline to V_f
+printf('\nb.Time taken = %0.1f ms',T*1000)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest