diff options
Diffstat (limited to '3845/CH14')
-rw-r--r-- | 3845/CH14/EX14.1/Ex14_1.sce | 22 | ||||
-rw-r--r-- | 3845/CH14/EX14.2/Ex14_2.sce | 13 | ||||
-rw-r--r-- | 3845/CH14/EX14.3/Ex14_3.sce | 11 | ||||
-rw-r--r-- | 3845/CH14/EX14.4/Ex14_4.sce | 13 | ||||
-rw-r--r-- | 3845/CH14/EX14.5/Ex14_5.sce | 14 | ||||
-rw-r--r-- | 3845/CH14/EX14.6/Ex14_6.sce | 13 | ||||
-rw-r--r-- | 3845/CH14/EX14.7/Ex14_7.sce | 12 | ||||
-rw-r--r-- | 3845/CH14/EX14.8/Ex14_8.sce | 9 | ||||
-rw-r--r-- | 3845/CH14/EX14.9/Ex14_9.sce | 13 |
9 files changed, 120 insertions, 0 deletions
diff --git a/3845/CH14/EX14.1/Ex14_1.sce b/3845/CH14/EX14.1/Ex14_1.sce new file mode 100644 index 000000000..d627447c3 --- /dev/null +++ b/3845/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,22 @@ +//Example 14.1
+T_f=80;//Final temperature (C)
+T_i=20;//Initial temperature (C)
+delta_T=T_f-T_i;//Temperature change (C)
+rho=1000;//Density of water (kg/m^3)
+V=0.250;//Volume (L)
+V=V*10^-3;//Volume (m^3)
+m_W=rho*V;//Mass of water (kg)
+c_W=4186;//Specific heat of water (J/kg.C), See Table 14.1
+Q_W=m_W*c_W*delta_T/1000;//Heat required by water(kJ)
+printf('a.Heat required by water= %0.1f kJ',Q_W)
+m_Al=0.5;//Mass of aluminum (kg)
+c_Al=900;//Specific heat of aluminum (J/kg.C), See Table 14.1
+Q_Al=m_Al*c_Al*delta_T/1000;//Heat required by aluminum (kJ)
+printf('\n Heat required by pan = %0.1f kJ',Q_Al)
+Q_total=Q_W+Q_Al;//Total heat transferred (kJ)
+printf('\n Total Heat required = %0.1f kJ',Q_total)
+printf('\nb.Percentage of heat used to heat the pan = %0.1f%%',Q_Al/Q_total*100)
+printf('\nc.Percentage of heat used to heat the water = %0.1f%%',Q_W/Q_total*100)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
+
diff --git a/3845/CH14/EX14.2/Ex14_2.sce b/3845/CH14/EX14.2/Ex14_2.sce new file mode 100644 index 000000000..3db0a3b90 --- /dev/null +++ b/3845/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,13 @@ +//Example 14.2
+M=10000;//Mass of truck (kg)
+g=9.80;//Acceleration due to gravity (m/s^2)
+h=75;//Vertical displacement (m)
+delta_PE=M*g*h;//Change in gravitational potential energy (J)
+Q=delta_PE;//Heat transferred (J)
+m=100;//Mass of brake material (kg)
+c=800;//Specific heat of brake material (J/kg.C)
+delta_T=Q/(m*c);//Temperature increase (C)
+printf('Temperature increase of brake material = %0.2f C',delta_T)
+//Answer varies due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH14/EX14.3/Ex14_3.sce b/3845/CH14/EX14.3/Ex14_3.sce new file mode 100644 index 000000000..4e0ea5edc --- /dev/null +++ b/3845/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,11 @@ +//Example 14.3
+m_Al=0.5;//Mass of aluminum pan (kg)
+c_Al=900;//Specific heat of aluminum (J/kg.C)
+T_Al=150;//Initial temperature of pan (C)
+m_W=0.25;//Mass of water (kg)
+c_W=4186;//Specific heat of water (J/kg.C)
+T_W=20;//Initial temperature of water (C)
+T_f=[(m_Al*c_Al*T_Al)+(m_W*c_W*T_W)]/(m_Al*c_Al+m_W*c_W);//Final temperature, See Equation 14.15 (C)
+printf('Final temperature = %0.1f C',T_f)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH14/EX14.4/Ex14_4.sce b/3845/CH14/EX14.4/Ex14_4.sce new file mode 100644 index 000000000..b204b659f --- /dev/null +++ b/3845/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,13 @@ +//Example 14.4
+m_ice=3*6;//Mass of ice cubes (g)
+m_ice=m_ice/1000;//Mass of ice cubes (kg)
+L_f=334000;//Latent heat of fusion of water (J/kg)
+c_W=4186;//Specific heat of water (and soda) (J/kg.C)
+T_ice=0;//Initial temperature of ice cubes (C)
+m_soda=0.25;//Mass of soda (kg)
+T_soda=20;//Initial temperature of soda (C)
+T_f=[(m_soda*c_W*T_soda)-(m_ice*L_f)]/[(m_soda+m_ice)*c_W];//Final temperature after derivation (C)
+printf('Final temperature = %0.2f C',T_f)
+//An error of more than 2% due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH14/EX14.5/Ex14_5.sce b/3845/CH14/EX14.5/Ex14_5.sce new file mode 100644 index 000000000..c0194e20b --- /dev/null +++ b/3845/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,14 @@ +//Example 14.5
+A=0.950;//Area (m^2)
+d=2.5*10^-2;//Thickness (m)
+T1=0;//Temperature inside the box (C)
+T2=35;//Temperature outside the box (C)
+t=24*60*60;//Time, convert 1 day to seconds (s)
+k=0.010;//Thermal conductivity of styrofoam (J/s.m.C)
+rate=[k*A*(T2-T1)]/d;//Rate of conductive heat transfer (J/s)
+Q=rate*t;//Heat energy transferred (J)
+L_f=334*10^3;//Latent heat of fusion of water (J/kg)
+m=Q/L_f;//Mass of ice melted (kg)
+printf('Amount of ice that melts in one day = %0.2f kg',m)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH14/EX14.6/Ex14_6.sce b/3845/CH14/EX14.6/Ex14_6.sce new file mode 100644 index 000000000..9cbe94e25 --- /dev/null +++ b/3845/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,13 @@ +//Example 14.6
+d=0.8*10^-2;//Thickness of pan bottom (m)
+r=(14/2)*10^-2;//Radius of pan (m)
+A=%pi*r^2;//Area of pan bottom (m^2)
+k=220;//Thermal conductivity of aluminum (J/s.m.C)
+m=1*10^-3;//Mass of water (kg)
+L_v=2256*10^3;//Latent heat of vaporization (J/kg)
+Q=m*L_v;//Heat of vaporization of 1g of water (J)
+rate=Q/1;//Rate of heat transfer,Q/t, (J/s)
+delta_T=rate*d/(k*A);//Temperature difference (C)
+printf('Temperature difference across the bottom of the pan = %0.2f C',delta_T)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH14/EX14.7/Ex14_7.sce b/3845/CH14/EX14.7/Ex14_7.sce new file mode 100644 index 000000000..823622881 --- /dev/null +++ b/3845/CH14/EX14.7/Ex14_7.sce @@ -0,0 +1,12 @@ +//Example 14.7
+rho=1.29;//Density of air (kg/m^3)
+V=12*18*3;//Volume (m^3)
+m=rho*V;//Mass of air (kg)
+c=1000;//Specific heat of air (J/kg.C), See Table 14.4
+delta_T=10;//Change in temperature (C)
+Q=m*c*delta_T;//Heat transferred (J)
+t=30*60;//Time,minutes converted to seconds,(s)
+rate=Q/t;//Heat transfer rate(W)
+printf('Rate of heat transfer = %0.2f kW',rate/1000)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
diff --git a/3845/CH14/EX14.8/Ex14_8.sce b/3845/CH14/EX14.8/Ex14_8.sce new file mode 100644 index 000000000..9b9a59a2f --- /dev/null +++ b/3845/CH14/EX14.8/Ex14_8.sce @@ -0,0 +1,9 @@ +//Example 14.8
+rate_heat=120;//Rate of production of heat, Q/t, (W) or (J/s)
+L_v=2430;//Latent heat of vaporization (kJ/kg) or (J/g), See Table 14.2
+rate_mass=rate_heat/L_v;//Rate at which water must evaporate (g/s)
+rate_mass=rate_mass*60;//Rate at which water must evaporate (g/min)
+printf('Water must evaporate at a rate = %0.2f g/min',rate_mass)
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
+
diff --git a/3845/CH14/EX14.9/Ex14_9.sce b/3845/CH14/EX14.9/Ex14_9.sce new file mode 100644 index 000000000..368f2bde2 --- /dev/null +++ b/3845/CH14/EX14.9/Ex14_9.sce @@ -0,0 +1,13 @@ +//Example 14.9
+T1=33;//Person's temperature (C)
+T1=T1+273;//Person's temperature (K)
+T2=22;//Ambient temperature of room (C)
+T2=T2+273;//Ambient temperature of room (K)
+A=1.50;//Surface area of skin (m^2)
+e=0.97;//Emissivity
+sigma=5.67*10^-8;//Stefan-Boltzmann constant (J/s.m^2.K^4)
+rate=sigma*e*A*(T2^4-T1^4);//Rate of radiative heat transfer (J/s)
+printf('Rate of radiative heat transfer = %0.2f W',rate)
+//The answer varies due to round off error
+//Openstax - College Physics
+//Download for free at http://cnx.org/content/col11406/latest
|